mirror of
https://gerrit.wikimedia.org/r/mediawiki/extensions/Math
synced 2024-11-25 07:56:58 +00:00
fd8eb448a3
In the most recent version of ubuntu14 the outputhash of the png images for some math objects has changed. However, the rendered images seem to look ok. Bug: T86309 Change-Id: I52dbdefdcfa19c10f1d9d1a43369aabe8bfd92bf
1798 lines
103 KiB
JSON
1798 lines
103 KiB
JSON
[
|
|
[
|
|
"e^{i \\pi} + 1 = 0\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"e^{i \\pi} + 1 = 0\\,\\!\" src=\"9e9a547076c6820b95e439dd1a5d6a32.png\" \/>"
|
|
],
|
|
[
|
|
"e^{i \\pi} + 1 = 0\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"e^{i \\pi} + 1 = 0\\,\\!\" src=\"9e9a547076c6820b95e439dd1a5d6a32.png\" \/>"
|
|
],
|
|
[
|
|
"\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!\" src=\"67aca9e0de80ac6ab651ed1097b49fe2.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{abc}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{abc}\" src=\"46045b1f6fa9dc10a3112ba360d4d9d7.png\" \/>"
|
|
],
|
|
[
|
|
"\\alpha\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\alpha\\,\\!\" src=\"4bc6c42bbabe567d1f2516326e52b775.png\" \/>"
|
|
],
|
|
[
|
|
" f(x) = x^2\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" f(x) = x^2\\,\\!\" src=\"3a5f0f03603148035120a3cba993e54f.png\" \/>"
|
|
],
|
|
[
|
|
"\\sqrt{2}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sqrt{2}\" src=\"ef5590434a387b3c4427e09d5b08baaf.png\" \/>"
|
|
],
|
|
[
|
|
"\\sqrt{1-e^2}\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sqrt{1-e^2}\\!\" src=\"04c93cf9f0a7cf697add9a2d4173a9e9.png\" \/>"
|
|
],
|
|
[
|
|
"\\sqrt{1-z^3}\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sqrt{1-z^3}\\!\" src=\"108d6aa70c84fddabbbd3ec97f3d3ff8.png\" \/>"
|
|
],
|
|
[
|
|
"x",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x\" src=\"9dd4e461268c8034f5c8564e155c67a6.png\" \/>"
|
|
],
|
|
[
|
|
"\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!\" src=\"c096beaae99e2d37b4050c4ccf30fbf8.png\" \/>"
|
|
],
|
|
[
|
|
"\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!\" src=\"ef387ac79f18651dd3105d2c584b3c95.png\" \/>"
|
|
],
|
|
[
|
|
"\\hat{a}, \\widehat{a}, \\vec{a} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\hat{a}, \\widehat{a}, \\vec{a} \\!\" src=\"731677a388ba08f520ebe91623dab74a.png\" \/>"
|
|
],
|
|
[
|
|
"\\exp_a b = a^b, \\exp b = e^b, 10^m \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\exp_a b = a^b, \\exp b = e^b, 10^m \\!\" src=\"199ac36bc19f7951df5041aedc1e2525.png\" \/>"
|
|
],
|
|
[
|
|
"\\ln c, \\lg d = \\log e, \\log_{10} f \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\ln c, \\lg d = \\log e, \\log_{10} f \\!\" src=\"d58edc12e2750302cfcdfd47f7674607.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!\" src=\"0de90ca439db043c53360a81e56e2543.png\" \/>"
|
|
],
|
|
[
|
|
"\\arcsin h, \\arccos i, \\arctan j \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\arcsin h, \\arccos i, \\arctan j \\!\" src=\"d4f41532d2a06150554f27d52b3c9479.png\" \/>"
|
|
],
|
|
[
|
|
"\\sinh k, \\cosh l, \\tanh m, \\coth n \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sinh k, \\cosh l, \\tanh m, \\coth n \\!\" src=\"2d460f19d2addae865a78806e3a3afd8.png\" \/>"
|
|
],
|
|
[
|
|
"\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!\" src=\"7f37a94f008e914726d78b52bf7e3ff4.png\" \/>"
|
|
],
|
|
[
|
|
"\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!\" src=\"4e797e4c1988d0f75df043f9347214c0.png\" \/>"
|
|
],
|
|
[
|
|
"\\sgn r, \\left\\vert s \\right\\vert \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sgn r, \\left\\vert s \\right\\vert \\!\" src=\"cf2302a36d9f76e484ea9833b583bc73.png\" \/>"
|
|
],
|
|
[
|
|
"\\min(x,y), \\max(x,y) \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\min(x,y), \\max(x,y) \\!\" src=\"6685fb9850f120547152b9e8f89e127d.png\" \/>"
|
|
],
|
|
[
|
|
"\\min x, \\max y, \\inf s, \\sup t \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\min x, \\max y, \\inf s, \\sup t \\!\" src=\"8cb6afbfa7011932573dc4fe62a6326f.png\" \/>"
|
|
],
|
|
[
|
|
"\\lim u, \\liminf v, \\limsup w \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lim u, \\liminf v, \\limsup w \\!\" src=\"15e23ef762c80f28daef47e565900b89.png\" \/>"
|
|
],
|
|
[
|
|
"\\dim p, \\deg q, \\det m, \\ker\\phi \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dim p, \\deg q, \\det m, \\ker\\phi \\!\" src=\"ffbfa151b5260ecb5ef79f0c87514688.png\" \/>"
|
|
],
|
|
[
|
|
"\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!\" src=\"dde6ad7a50f2079b6e085bccfcbe49e0.png\" \/>"
|
|
],
|
|
[
|
|
"dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!\" src=\"b32346afbfaabbd8e7e3eee827952c44.png\" \/>"
|
|
],
|
|
[
|
|
"dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!\" src=\"8854ea48cc731b20acb7e31b7676ab14.png\" \/>"
|
|
],
|
|
[
|
|
"\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y\" src=\"99434cfc81c7e2121520b25248f49eab.png\" \/>"
|
|
],
|
|
[
|
|
"\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!\" src=\"5a419cad96da19939591abb89e952110.png\" \/>"
|
|
],
|
|
[
|
|
"\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!\" src=\"c390bebffad60aca74b245dcc59a25ef.png\" \/>"
|
|
],
|
|
[
|
|
"s_k \\equiv 0 \\pmod{m} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"s_k \\equiv 0 \\pmod{m} \\!\" src=\"353ab52b3f2c5f26ee74c81d31f2a36c.png\" \/>"
|
|
],
|
|
[
|
|
"a\\,\\bmod\\,b \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a\\,\\bmod\\,b \\!\" src=\"ee6494b1a13934593f79f5874592a117.png\" \/>"
|
|
],
|
|
[
|
|
"\\gcd(m, n), \\operatorname{lcm}(m, n)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\gcd(m, n), \\operatorname{lcm}(m, n)\" src=\"6d966ef8f78b4ae70f97c9d14f873cfa.png\" \/>"
|
|
],
|
|
[
|
|
"\\mid, \\nmid, \\shortmid, \\nshortmid \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mid, \\nmid, \\shortmid, \\nshortmid \\!\" src=\"39e442097c139a70392ae8a043a9297a.png\" \/>"
|
|
],
|
|
[
|
|
"\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!\" src=\"2ab6022932b3bf67498985081a9a0546.png\" \/>"
|
|
],
|
|
[
|
|
"+, -, \\pm, \\mp, \\dotplus \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"+, -, \\pm, \\mp, \\dotplus \\!\" src=\"5c60a256506efc42047c06ea4cba9cf3.png\" \/>"
|
|
],
|
|
[
|
|
"\\times, \\div, \\divideontimes, \/, \\backslash \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\times, \\div, \\divideontimes, \/, \\backslash \\!\" src=\"b386c20a84be6bea1495f8f4d34aaf9d.png\" \/>"
|
|
],
|
|
[
|
|
"\\cdot, * \\ast, \\star, \\circ, \\bullet \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\cdot, * \\ast, \\star, \\circ, \\bullet \\!\" src=\"1538e6e687ddbc430d2edba1dd4c57f3.png\" \/>"
|
|
],
|
|
[
|
|
"\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!\" src=\"a7d67089f319edbd2c6ceda550ae97fc.png\" \/>"
|
|
],
|
|
[
|
|
"\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!\" src=\"efa177feefc3df54b529112042dd4862.png\" \/>"
|
|
],
|
|
[
|
|
"\\circleddash, \\circledcirc, \\circledast \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\circleddash, \\circledcirc, \\circledast \\!\" src=\"e33c682e034881ea51ca94419fe6534f.png\" \/>"
|
|
],
|
|
[
|
|
"\\bigoplus, \\bigotimes, \\bigodot \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bigoplus, \\bigotimes, \\bigodot \\!\" src=\"901f6c26646a95b68684a88c3dd7ba23.png\" \/>"
|
|
],
|
|
[
|
|
"\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!\" src=\"66f1c50302d04ec150b9791a0ed9dd72.png\" \/>"
|
|
],
|
|
[
|
|
"\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!\" src=\"e3ccfeab48f96e390879beae43fef5f6.png\" \/>"
|
|
],
|
|
[
|
|
"\\cap, \\Cap, \\sqcap, \\bigcap \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\cap, \\Cap, \\sqcap, \\bigcap \\!\" src=\"fce1ad3d3efa856b424905062f483e19.png\" \/>"
|
|
],
|
|
[
|
|
"\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!\" src=\"b8621006bb69395016e695a8f866c004.png\" \/>"
|
|
],
|
|
[
|
|
"\\setminus, \\smallsetminus, \\times \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\setminus, \\smallsetminus, \\times \\!\" src=\"e17420f59b39e697a8f0cbd94dd53ad5.png\" \/>"
|
|
],
|
|
[
|
|
"\\subset, \\Subset, \\sqsubset \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\subset, \\Subset, \\sqsubset \\!\" src=\"b4900dc0901ce8489cff150076d16088.png\" \/>"
|
|
],
|
|
[
|
|
"\\supset, \\Supset, \\sqsupset \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\supset, \\Supset, \\sqsupset \\!\" src=\"cb5fa1a8597041a2eb565361a1401079.png\" \/>"
|
|
],
|
|
[
|
|
"\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!\" src=\"54b164cefa6faadfce92a97d239f2f80.png\" \/>"
|
|
],
|
|
[
|
|
"\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!\" src=\"4e928a53227784971555d98d1ef5c7be.png\" \/>"
|
|
],
|
|
[
|
|
"\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!\" src=\"0162e51aac9e459011206dd370890444.png\" \/>"
|
|
],
|
|
[
|
|
"\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!\" src=\"3a07c3fb9a0f14534117951fc276d2e0.png\" \/>"
|
|
],
|
|
[
|
|
"=, \\ne, \\neq, \\equiv, \\not\\equiv \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"=, \\ne, \\neq, \\equiv, \\not\\equiv \\!\" src=\"71bb47c2145fabb0a1692fe545a019c8.png\" \/>"
|
|
],
|
|
[
|
|
"\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!\" src=\"6426a1cb9fe7d87280f4d1b7137abc07.png\" \/>"
|
|
],
|
|
[
|
|
"\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!\" src=\"30784f1f1b325970cfacabacb47b192e.png\" \/>"
|
|
],
|
|
[
|
|
"\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!\" src=\"8c58c414b8003f68301141b50ceadc02.png\" \/>"
|
|
],
|
|
[
|
|
"<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!\" src=\"346b8a9e0891b24a7433041f233be228.png\" \/>"
|
|
],
|
|
[
|
|
">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!\" src=\"8b8f7a0e7ad46e494dc5b032c5558068.png\" \/>"
|
|
],
|
|
[
|
|
"\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!\" src=\"2a0fc5dad4cb369221b29e8a49c0e769.png\" \/>"
|
|
],
|
|
[
|
|
"\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!\" src=\"ab7369a11c4f4e0db4d838b4303a673c.png\" \/>"
|
|
],
|
|
[
|
|
"\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!\" src=\"849c96983e134159f2d7da012e2fef32.png\" \/>"
|
|
],
|
|
[
|
|
"\\leqslant, \\nleqslant, \\eqslantless \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\leqslant, \\nleqslant, \\eqslantless \\!\" src=\"69bafd8e6dd7f1e6c45449a7eb0bbd72.png\" \/>"
|
|
],
|
|
[
|
|
"\\geqslant, \\ngeqslant, \\eqslantgtr \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\geqslant, \\ngeqslant, \\eqslantgtr \\!\" src=\"dfba791fb6522dc8d44b3c8d751d8bf5.png\" \/>"
|
|
],
|
|
[
|
|
"\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!\" src=\"13fd2ed1c2d478c14cece389bb5c64a1.png\" \/>"
|
|
],
|
|
[
|
|
" \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,\" src=\"d74fd13928904c2d1b8f494a026e58b1.png\" \/>"
|
|
],
|
|
[
|
|
"\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!\" src=\"efd1161f1c5933353120560a5706009b.png\" \/>"
|
|
],
|
|
[
|
|
"\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!\" src=\"fbf129d72470a83b6f94671d3f3c3736.png\" \/>"
|
|
],
|
|
[
|
|
"\\preccurlyeq, \\curlyeqprec \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\preccurlyeq, \\curlyeqprec \\,\" src=\"618877a0da3b42786403dd6f89f23cd4.png\" \/>"
|
|
],
|
|
[
|
|
"\\succcurlyeq, \\curlyeqsucc \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\succcurlyeq, \\curlyeqsucc \\,\" src=\"c62e39463302a563b562ca55a05b427b.png\" \/>"
|
|
],
|
|
[
|
|
"\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,\" src=\"94defc1756f8294cc2126346b99a61a6.png\" \/>"
|
|
],
|
|
[
|
|
"\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,\" src=\"c7d48d910d1de01a804bcf1e0ef65e1d.png\" \/>"
|
|
],
|
|
[
|
|
"\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!\" src=\"5b09ecb8b14b1df562a4caf1180c7d29.png\" \/>"
|
|
],
|
|
[
|
|
"\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!\" src=\"ddc31bfbbe9c00652ee9dfa869cdbd73.png\" \/>"
|
|
],
|
|
[
|
|
"\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!\" src=\"bdf723cee9fa064c46b56a76fc90f40f.png\" \/>"
|
|
],
|
|
[
|
|
"\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!\" src=\"aa8038ff0b44c400b3ce49f30bd8640a.png\" \/>"
|
|
],
|
|
[
|
|
"\\vartriangle, \\triangledown\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\vartriangle, \\triangledown\\!\" src=\"a0ce77d5ff2eee65687c195a386e2a57.png\" \/>"
|
|
],
|
|
[
|
|
"\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!\" src=\"fb28c5e57867c70b72ee3ec7767725a2.png\" \/>"
|
|
],
|
|
[
|
|
"\\forall, \\exists, \\nexists \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\forall, \\exists, \\nexists \\!\" src=\"686b55bf8ded08acf37721fa9e289505.png\" \/>"
|
|
],
|
|
[
|
|
"\\therefore, \\because, \\And \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\therefore, \\because, \\And \\!\" src=\"e152ae479d89f44ffcb05f5c0010f977.png\" \/>"
|
|
],
|
|
[
|
|
"\\or \\lor \\vee, \\curlyvee, \\bigvee \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\or \\lor \\vee, \\curlyvee, \\bigvee \\!\" src=\"73cb2ef925b7885181d33363b6dc562a.png\" \/>"
|
|
],
|
|
[
|
|
"\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!\" src=\"6b5e9b7373ce2c57602dc9dae4c84adb.png\" \/>"
|
|
],
|
|
[
|
|
"\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!\" src=\"223a4c78df8eb8b9a1086c5e490f48ce.png\" \/>"
|
|
],
|
|
[
|
|
"\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!\" src=\"99f7d273b7b0b3509afedb5c7f6738a0.png\" \/>"
|
|
],
|
|
[
|
|
"\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!\" src=\"c1eec4d326b28c81681be40303f53029.png\" \/>"
|
|
],
|
|
[
|
|
"\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!\" src=\"89b4b08896b7110ddb06bf486b6791ec.png\" \/>"
|
|
],
|
|
[
|
|
"\\ulcorner \\urcorner \\llcorner \\lrcorner \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\ulcorner \\urcorner \\llcorner \\lrcorner \\,\" src=\"a21720642028f8a9fe4157c6800f3ba3.png\" \/>"
|
|
],
|
|
[
|
|
"\\Rrightarrow, \\Lleftarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Rrightarrow, \\Lleftarrow \\!\" src=\"c960b376ea9224b684e54d964af456dd.png\" \/>"
|
|
],
|
|
[
|
|
"\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!\" src=\"31c1448fab538846ac5f11bc2022c176.png\" \/>"
|
|
],
|
|
[
|
|
"\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!\" src=\"84b1cba7e578ad0ff11d4bf2f22ce2e7.png\" \/>"
|
|
],
|
|
[
|
|
"\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!\" src=\"7eb8b8e5483e32ff80c2cfcc8255091d.png\" \/>"
|
|
],
|
|
[
|
|
"\\Uparrow, \\Downarrow, \\Updownarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Uparrow, \\Downarrow, \\Updownarrow \\!\" src=\"7efd0476ba546822fa6059aea7adfec6.png\" \/>"
|
|
],
|
|
[
|
|
"\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!\" src=\"f1274eb98e3631ddde35ce79a1371ccc.png\" \/>"
|
|
],
|
|
[
|
|
"\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!\" src=\"416c117d1c7b30d1f655eff0dd223aa7.png\" \/>"
|
|
],
|
|
[
|
|
"\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!\" src=\"4c589175a17c959876c7843656839055.png\" \/>"
|
|
],
|
|
[
|
|
"\\uparrow, \\downarrow, \\updownarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\uparrow, \\downarrow, \\updownarrow \\!\" src=\"92df6c1de62cb4c990943f697dc9d5e9.png\" \/>"
|
|
],
|
|
[
|
|
"\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!\" src=\"c050f2c2ab90cedc7b277ca59954d607.png\" \/>"
|
|
],
|
|
[
|
|
"\\mapsto, \\longmapsto \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mapsto, \\longmapsto \\!\" src=\"fbd64bf3496731549c3adf48abcb6726.png\" \/>"
|
|
],
|
|
[
|
|
"\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!\" src=\"422d605ad5b47e52b7275a53d9d87499.png\" \/>"
|
|
],
|
|
[
|
|
"\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!\" src=\"49b807f451f07bd074ece7e0dd1030c0.png\" \/>"
|
|
],
|
|
[
|
|
"\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!\" src=\"4bd4fbd2e32aabba593a093331aa5e7a.png\" \/>"
|
|
],
|
|
[
|
|
"\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!\" src=\"ad1b5e897e1e42b0541f628ba2373316.png\" \/>"
|
|
],
|
|
[
|
|
"\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!\" src=\"cee34c650af3f8f9d2509ff6a532d72b.png\" \/>"
|
|
],
|
|
[
|
|
"\\smile \\frown \\wr \\triangleleft \\triangleright\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\smile \\frown \\wr \\triangleleft \\triangleright\\!\" src=\"21ac72c7b055e08569958c900c80fc2c.png\" \/>"
|
|
],
|
|
[
|
|
"\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!\" src=\"0c2b0cc6b1aec3eef3dd4ea2a2577cfd.png\" \/>"
|
|
],
|
|
[
|
|
"\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!\" src=\"db4e3633a6cb328d58e994d8902e214c.png\" \/>"
|
|
],
|
|
[
|
|
"\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!\" src=\"62167659ee6ffb21c81d130f9444aaeb.png\" \/>"
|
|
],
|
|
[
|
|
"\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!\" src=\"77c1d9d38e2af63f15deb3bfab0a75e8.png\" \/>"
|
|
],
|
|
[
|
|
"\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!\" src=\"22942360063a4b9991511ce68a0461b8.png\" \/>"
|
|
],
|
|
[
|
|
"\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!\" src=\"314bd37d48aa31ee670ae3c5c94e4663.png\" \/>"
|
|
],
|
|
[
|
|
"a^2",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a^2\" src=\"a4791fd2e334993453b00d036ab792af.png\" \/>"
|
|
],
|
|
[
|
|
"a_2",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a_2\" src=\"0f768ac5d5dea8d93716a27da05871de.png\" \/>"
|
|
],
|
|
[
|
|
"10^{30} a^{2+2}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"10^{30} a^{2+2}\" src=\"32ca3769f0845a739d1905190921cfbf.png\" \/>"
|
|
],
|
|
[
|
|
"a_{i,j} b_{f'}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a_{i,j} b_{f'}\" src=\"0f4147d22d4fd86b0b1ae03159179f75.png\" \/>"
|
|
],
|
|
[
|
|
"x_2^3",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x_2^3\" src=\"1d368948190fdda83d5a2a398b1c1927.png\" \/>"
|
|
],
|
|
[
|
|
"{x_2}^3 \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{x_2}^3 \\,\\!\" src=\"a168479afc14eaf30f911f14100be89d.png\" \/>"
|
|
],
|
|
[
|
|
"10^{10^{8}}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"10^{10^{8}}\" src=\"9c6e0dad7a12f5eb70209bc235df2e3a.png\" \/>"
|
|
],
|
|
[
|
|
"\\sideset{_1^2}{_3^4}\\prod_a^b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sideset{_1^2}{_3^4}\\prod_a^b\" src=\"bd00243bd391e7d7401aa59203f59981.png\" \/>"
|
|
],
|
|
[
|
|
"{}_1^2\\!\\Omega_3^4",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{}_1^2\\!\\Omega_3^4\" src=\"15ba0b09e81e31854db164051a52502e.png\" \/>"
|
|
],
|
|
[
|
|
"\\overset{\\alpha}{\\omega}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\overset{\\alpha}{\\omega}\" src=\"fd91a9665d330097d6f847e140a0bf09.png\" \/>"
|
|
],
|
|
[
|
|
"\\underset{\\alpha}{\\omega}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\underset{\\alpha}{\\omega}\" src=\"d75cfe5f3b21632bdc8c274d9690a4a6.png\" \/>"
|
|
],
|
|
[
|
|
"\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}\" src=\"ad6263e136435be19ea5761d672622e9.png\" \/>"
|
|
],
|
|
[
|
|
"\\stackrel{\\alpha}{\\omega}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\stackrel{\\alpha}{\\omega}\" src=\"de51915eed5826ec13b061539f249359.png\" \/>"
|
|
],
|
|
[
|
|
"x', y'', f', f''",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x', y'', f', f''\" src=\"38198fd7fa831b8cca706fe92505c726.png\" \/>"
|
|
],
|
|
[
|
|
"x^\\prime, y^{\\prime\\prime}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x^\\prime, y^{\\prime\\prime}\" src=\"3f8892c43f66700333f11c45029e30ac.png\" \/>"
|
|
],
|
|
[
|
|
"\\dot{x}, \\ddot{x}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dot{x}, \\ddot{x}\" src=\"28c4f624dc02d1e01adde0928c45ff07.png\" \/>"
|
|
],
|
|
[
|
|
" \\hat a \\ \\bar b \\ \\vec c",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\hat a \\ \\bar b \\ \\vec c\" src=\"93f5427e14ad2339f6905e1141f52d38.png\" \/>"
|
|
],
|
|
[
|
|
" \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}\" src=\"068086b5de6bf21adea301df3efffbf7.png\" \/>"
|
|
],
|
|
[
|
|
" \\overline{g h i} \\ \\underline{j k l}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\overline{g h i} \\ \\underline{j k l}\" src=\"849f4d97e037fc2cf06b1257d31b67a9.png\" \/>"
|
|
],
|
|
[
|
|
"\\overset{\\frown} {AB}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\overset{\\frown} {AB}\" src=\"8748475980cbfc9c9028b4b298d2f438.png\" \/>"
|
|
],
|
|
[
|
|
" A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C\" src=\"ce50e9216ca80ae92251cbdeea7ce134.png\" \/>"
|
|
],
|
|
[
|
|
"\\overbrace{ 1+2+\\cdots+100 }^{5050}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\overbrace{ 1+2+\\cdots+100 }^{5050}\" src=\"eae794abb74d6c73dc96eaa994cc0a16.png\" \/>"
|
|
],
|
|
[
|
|
"\\underbrace{ a+b+\\cdots+z }_{26}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\underbrace{ a+b+\\cdots+z }_{26}\" src=\"32035dea97452b31b44d084f90bd66a6.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{k=1}^N k^2",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{k=1}^N k^2\" src=\"3187b0dd4e53e474d81e26f775c1cdfa.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\sum_{k=1}^N k^2",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\sum_{k=1}^N k^2\" src=\"ee6fd1bafe0faa5913e5cf53d90096fa.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{\\sum_{k=1}^N k^2}{a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{\\sum_{k=1}^N k^2}{a}\" src=\"e4b2e0205d7b4bc8dfdd8bfb4fa6986e.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}\" src=\"8c1e37db35417fd592a89614b954327d.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}\" src=\"f6e3e304b3ee1d87ebb949075e8839e4.png\" \/>"
|
|
],
|
|
[
|
|
"\\prod_{i=1}^N x_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\prod_{i=1}^N x_i\" src=\"f2be40a3bca3b9cc59559468999c5a9d.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\prod_{i=1}^N x_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\prod_{i=1}^N x_i\" src=\"65b9b87b09704b4e4301e774de4c57ae.png\" \/>"
|
|
],
|
|
[
|
|
"\\coprod_{i=1}^N x_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\coprod_{i=1}^N x_i\" src=\"d684b776e6e99aaa14db27115904c5bf.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\coprod_{i=1}^N x_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\coprod_{i=1}^N x_i\" src=\"14a11d376f41516ee499e2830f056523.png\" \/>"
|
|
],
|
|
[
|
|
"\\lim_{n \\to \\infty}x_n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lim_{n \\to \\infty}x_n\" src=\"f64f3526ec6d389a67c3e13dbf609dc9.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\lim_{n \\to \\infty}x_n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\lim_{n \\to \\infty}x_n\" src=\"1c00b7e0e828c0f44e484919b9e0174e.png\" \/>"
|
|
],
|
|
[
|
|
"\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx\" src=\"40764d04d428b630657f305cba34c985.png\" \/>"
|
|
],
|
|
[
|
|
"\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx\" src=\"d5e7d8bdc59d07349b3966578895a93f.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx\" src=\"9194fdfb9704fa475c5ae486a56041ea.png\" \/>"
|
|
],
|
|
[
|
|
"\\textstyle \\int_{-N}^{N} e^x\\, dx",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\textstyle \\int_{-N}^{N} e^x\\, dx\" src=\"1726000a5a8e3c02cea114e5b545941c.png\" \/>"
|
|
],
|
|
[
|
|
"\\iint\\limits_D \\, dx\\,dy",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iint\\limits_D \\, dx\\,dy\" src=\"4abac8d616c5670900504ddce25a4a4b.png\" \/>"
|
|
],
|
|
[
|
|
"\\iiint\\limits_E \\, dx\\,dy\\,dz",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iiint\\limits_E \\, dx\\,dy\\,dz\" src=\"6e9a4e709d965b32de1ab3d16aca388a.png\" \/>"
|
|
],
|
|
[
|
|
"\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt\" src=\"49005f50f3ba2dfade3a265ebe363ee9.png\" \/>"
|
|
],
|
|
[
|
|
"\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy\" src=\"cfcc65ff7c8970aac316f359a9aaf928.png\" \/>"
|
|
],
|
|
[
|
|
"\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy\" src=\"d6c5bf8e05426a4b56804937b9ffb559.png\" \/>"
|
|
],
|
|
[
|
|
"\\bigcap_{i=_1}^n E_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bigcap_{i=_1}^n E_i\" src=\"83d87c98d958c7c2db86180b49230b65.png\" \/>"
|
|
],
|
|
[
|
|
"\\bigcup_{i=_1}^n E_i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bigcup_{i=_1}^n E_i\" src=\"e6409717ec9d63567a34f9d1173ce2ae.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{2}{4}=0.5",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{2}{4}=0.5\" src=\"46dc0b34e0ab4e944a437720a4431d6c.png\" \/>"
|
|
],
|
|
[
|
|
"\\tfrac{2}{4} = 0.5",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\tfrac{2}{4} = 0.5\" src=\"284667fc4a92790093aa59b61b3667a0.png\" \/>"
|
|
],
|
|
[
|
|
"\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a\" src=\"5a37ae94a95c7dd603c20cd4fbe8d9e9.png\" \/>"
|
|
],
|
|
[
|
|
"\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a\" src=\"6d099c02b3faf73f9320656217415906.png\" \/>"
|
|
],
|
|
[
|
|
"\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}\" src=\"fa001cd2dd438152e45a44591f235148.png\" \/>"
|
|
],
|
|
[
|
|
"\\binom{n}{k}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\binom{n}{k}\" src=\"6b2be63a1b8e310465d1b538e2d7d71b.png\" \/>"
|
|
],
|
|
[
|
|
"\\tbinom{n}{k}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\tbinom{n}{k}\" src=\"8482b29cc0af31fa35ff6bf04200b265.png\" \/>"
|
|
],
|
|
[
|
|
"\\dbinom{n}{k}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dbinom{n}{k}\" src=\"c44601a9dbb85dfb88868c14dc54c8ef.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{matrix} x & y \\\\ z & v\n\\end{matrix}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{matrix} x & y \\\\ z & v \\end{matrix}\" src=\"b99890966e1b997497211428f8e3419d.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{vmatrix} x & y \\\\ z & v\n\\end{vmatrix}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{vmatrix} x & y \\\\ z & v \\end{vmatrix}\" src=\"92b8f0e57848a80b4babd2ba93775370.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{Vmatrix} x & y \\\\ z & v\n\\end{Vmatrix}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{Vmatrix} x & y \\\\ z & v \\end{Vmatrix}\" src=\"bba5bfd11057dbb202307584eed8f2dc.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots\n& \\ddots & \\vdots \\\\ 0 & \\cdots &\n0\\end{bmatrix} ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots & \\ddots & \\vdots \\\\ 0 & \\cdots & 0\\end{bmatrix} \" src=\"81a12a09ac84853e3d25323b8643c630.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{Bmatrix} x & y \\\\ z & v\n\\end{Bmatrix}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{Bmatrix} x & y \\\\ z & v \\end{Bmatrix}\" src=\"bf7244e2842c8a7d55892e229560d5c1.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{pmatrix} x & y \\\\ z & v\n\\end{pmatrix}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{pmatrix} x & y \\\\ z & v \\end{pmatrix}\" src=\"444df88e616def4e275b4e920c7b872e.png\" \/>"
|
|
],
|
|
[
|
|
"\n\\bigl( \\begin{smallmatrix}\na&b\\\\ c&d\n\\end{smallmatrix} \\bigr)\n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\bigl( \\begin{smallmatrix} a&b\\\\ c&d \\end{smallmatrix} \\bigr) \" src=\"cd49bbc188dce0f93fef57312af5a106.png\" \/>"
|
|
],
|
|
[
|
|
"f(n) =\n\\begin{cases}\nn\/2, & \\text{if }n\\text{ is even} \\\\\n3n+1, & \\text{if }n\\text{ is odd}\n\\end{cases} ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"f(n) = \\begin{cases} n\/2, & \\text{if }n\\text{ is even} \\\\ 3n+1, & \\text{if }n\\text{ is odd} \\end{cases} \" src=\"98503cc6876b22f5900297971fdd42ed.png\" \/>"
|
|
],
|
|
[
|
|
"\n\\begin{align}\nf(x) & = (a+b)^2 \\\\\n& = a^2+2ab+b^2 \\\\\n\\end{align}\n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\begin{align} f(x) & = (a+b)^2 \\\\ & = a^2+2ab+b^2 \\\\ \\end{align} \" src=\"2c50960e8bcfd9e86527a123a0c43aa2.png\" \/>"
|
|
],
|
|
[
|
|
"\n\\begin{alignat}{2}\nf(x) & = (a-b)^2 \\\\\n& = a^2-2ab+b^2 \\\\\n\\end{alignat}\n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\begin{alignat}{2} f(x) & = (a-b)^2 \\\\ & = a^2-2ab+b^2 \\\\ \\end{alignat} \" src=\"fe45a0df3e20bc5caf718e5333678d08.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{array}{lcl}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{array}{lcl} z & = & a \\\\ f(x,y,z) & = & x + y + z \\end{array}\" src=\"9bf19115bb27237fa997ca93b94ad217.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{array}{lcr}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{array}{lcr} z & = & a \\\\ f(x,y,z) & = & x + y + z \\end{array}\" src=\"02ae32735e1e21ba3b05984289fd2763.png\" \/>"
|
|
],
|
|
[
|
|
"f(x) \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"f(x) \\,\\!\" src=\"8dfae20000a042d8e9047aad1d7e171e.png\" \/>"
|
|
],
|
|
[
|
|
"= \\sum_{n=0}^\\infty a_n x^n ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"= \\sum_{n=0}^\\infty a_n x^n \" src=\"6633d51d63b35281d030755a6b0aebb1.png\" \/>"
|
|
],
|
|
[
|
|
"= a_0+a_1x+a_2x^2+\\cdots",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"= a_0+a_1x+a_2x^2+\\cdots\" src=\"fe3e268382fd486e8572daf895bd4c9d.png\" \/>"
|
|
],
|
|
[
|
|
"f(x) \\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"f(x) \\,\\!\" src=\"8dfae20000a042d8e9047aad1d7e171e.png\" \/>"
|
|
],
|
|
[
|
|
"= \\sum_{n=0}^\\infty a_n x^n ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"= \\sum_{n=0}^\\infty a_n x^n \" src=\"6633d51d63b35281d030755a6b0aebb1.png\" \/>"
|
|
],
|
|
[
|
|
"= a_0 +a_1x+a_2x^2+\\cdots",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"= a_0 +a_1x+a_2x^2+\\cdots\" src=\"fe3e268382fd486e8572daf895bd4c9d.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}\" src=\"6349be04b3562fc215c7a4e130422a96.png\" \/>"
|
|
],
|
|
[
|
|
"\n\\begin{array}{|c|c||c|} a & b & S \\\\\n\\hline\n0&0&1\\\\\n0&1&1\\\\\n1&0&1\\\\\n1&1&0\\\\\n\\end{array}\n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" \\begin{array}{|c|c||c|} a & b & S \\\\ \\hline 0&0&1\\\\ 0&1&1\\\\ 1&0&1\\\\ 1&1&0\\\\ \\end{array} \" src=\"9151e94ef2bb52c18176dbe4c11921ed.png\" \/>"
|
|
],
|
|
[
|
|
"( \\frac{1}{2} )",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"( \\frac{1}{2} )\" src=\"40ad9d3d1fc9a61e16d22d7e3f854fec.png\" \/>"
|
|
],
|
|
[
|
|
"\\left ( \\frac{1}{2} \\right )",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left ( \\frac{1}{2} \\right )\" src=\"28bcd5b82ce0e92b25e8a0b4bd5be215.png\" \/>"
|
|
],
|
|
[
|
|
"\\left ( \\frac{a}{b} \\right )",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left ( \\frac{a}{b} \\right )\" src=\"2905969500b40b2f2c7078206e7e0e81.png\" \/>"
|
|
],
|
|
[
|
|
"\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack\" src=\"7cb5a74153ec87cdda6b92669ba685e1.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace\" src=\"805b2e61cb380736d5366bccb844b1c7.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \\langle \\frac{a}{b} \\right \\rangle",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \\langle \\frac{a}{b} \\right \\rangle\" src=\"d06e733ce705ed26a7e048dbd2945371.png\" \/>"
|
|
],
|
|
[
|
|
"\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|\" src=\"809fc4791f12abb16a5f9611a43469f9.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil\" src=\"14c563a841b6c01dd13c5f3fa90845a1.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \/ \\frac{a}{b} \\right \\backslash",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \/ \\frac{a}{b} \\right \\backslash\" src=\"2f3c5907c0a4fc4fda69eb71890ce952.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow\" src=\"de73c9252b269fb79408d6f791b5c3de.png\" \/>"
|
|
],
|
|
[
|
|
"\\left [ 0,1 \\right )",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left [ 0,1 \\right )\" src=\"a38771eae1778d0e214f6596a8dc1337.png\" \/>"
|
|
],
|
|
[
|
|
"\\left \\langle \\psi \\right |",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left \\langle \\psi \\right |\" src=\"da25fc177fd4c53a2c3399c25685dd4c.png\" \/>"
|
|
],
|
|
[
|
|
"\\left . \\frac{A}{B} \\right \\} \\to X",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left . \\frac{A}{B} \\right \\} \\to X\" src=\"b71d82a3ed5c1a72ded46efc19ecc582.png\" \/>"
|
|
],
|
|
[
|
|
"\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]\" src=\"642a7988a93248dd92f1a53804cd40aa.png\" \/>"
|
|
],
|
|
[
|
|
"\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle\" src=\"a3c9de0fb4f73e62e457cc7c91c5f6f0.png\" \/>"
|
|
],
|
|
[
|
|
"\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|\" src=\"0445cc925a6ea0bd478a8f5fefc3633c.png\" \/>"
|
|
],
|
|
[
|
|
"\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil\" src=\"94c286b66620b6e5cd43c5cc20fe1a22.png\" \/>"
|
|
],
|
|
[
|
|
"\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow\" src=\"e16f28e8e168f07f25b7a0162ccc2866.png\" \/>"
|
|
],
|
|
[
|
|
"\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow\" src=\"d30b4b79fa453480ad0a50be8dfd8911.png\" \/>"
|
|
],
|
|
[
|
|
"\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash\" src=\"f01a0b3277fdff89f7dee39c2d6f7928.png\" \/>"
|
|
],
|
|
[
|
|
"x^2 + y^2 + z^2 = 1 \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x^2 + y^2 + z^2 = 1 \\,\" src=\"65f59a1d3fcd866ff10d5e3ac57f991e.png\" \/>"
|
|
],
|
|
[
|
|
"\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!\" src=\"a7a8e6bbde24e99f9dab00c840f9483d.png\" \/>"
|
|
],
|
|
[
|
|
"\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!\" src=\"5052faf817c1a445941f4005983fdc63.png\" \/>"
|
|
],
|
|
[
|
|
"\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!\" src=\"9d97dae2e9b62c1c9b6c104ef5eac475.png\" \/>"
|
|
],
|
|
[
|
|
"\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!\" src=\"9fef94989f0aefed4c953823bd945e89.png\" \/>"
|
|
],
|
|
[
|
|
"\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!\" src=\"dd438c310fdd611181d2d78eeca09d6f.png\" \/>"
|
|
],
|
|
[
|
|
"\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!\" src=\"c5a0f66abb41232d4d6e6e79954e3ee2.png\" \/>"
|
|
],
|
|
[
|
|
"\\varepsilon \\digamma \\varkappa \\varpi \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\varepsilon \\digamma \\varkappa \\varpi \\!\" src=\"d393ba319387b0c29b54c3488101e21b.png\" \/>"
|
|
],
|
|
[
|
|
"\\varrho \\varsigma \\vartheta \\varphi \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\varrho \\varsigma \\vartheta \\varphi \\!\" src=\"40714b7031faeacd49b6f8e23a529b7f.png\" \/>"
|
|
],
|
|
[
|
|
"\\aleph \\beth \\gimel \\daleth \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\aleph \\beth \\gimel \\daleth \\!\" src=\"d02fa3b52ced52aa798b674ea5710116.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbb{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbb{ABCDEFGHI} \\!\" src=\"16b49d7cbcbe69f78f5b039e1082eb21.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbb{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbb{JKLMNOPQR} \\!\" src=\"59834bc6366bc6bd065b46c9da28b81f.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbb{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbb{STUVWXYZ} \\!\" src=\"f8cecba104ecf7248d1e8624ea4f97ad.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{ABCDEFGHI} \\!\" src=\"a007c39fe7cdcaac5787780cd59f9863.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{JKLMNOPQR} \\!\" src=\"d576d3e20c41ffb373b3aa2666f84631.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{STUVWXYZ} \\!\" src=\"d63658e6be16cb35c5eeddd9af0d0456.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{abcdefghijklm} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{abcdefghijklm} \\!\" src=\"746a58465658c7ce27865b5874b866de.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{nopqrstuvwxyz} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{nopqrstuvwxyz} \\!\" src=\"7a2d9be40a985f3f4062e810aa82850f.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathbf{0123456789} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathbf{0123456789} \\!\" src=\"b58f56dec00a8c4058e96f4868dfaf38.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!\" src=\"53c4c980272d709263a0ec407ce9f000.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!\" src=\"e68389a7314c09b14444e535f71e853c.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!\" src=\"72f30cfb281ddfdbd437f17eab32dfde.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!\" src=\"c3d73d4055fbe3c3631848bc0317a0c5.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!\" src=\"d8bf62dcf94457cebec14434b72e3f62.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!\" src=\"3801c81d051bce44677f49e7d9069dd5.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!\" src=\"27b172a5d4d90f193347807c2828a142.png\" \/>"
|
|
],
|
|
[
|
|
"\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!\" src=\"9dc6a867e48fba8d25fdd599b6330f4f.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathit{0123456789} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathit{0123456789} \\!\" src=\"96846c8042557a593245c9adbfadcf67.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!\" src=\"ca124a231c239009f51303d8ac514eff.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!\" src=\"bfa30e6555a2803a938815fbee4a2c0a.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!\" src=\"b2ddf1062667a4ba071276d7368fe453.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{ABCDEFGHI} \\!\" src=\"3d36032a7983b4c8da9148beaf789055.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{JKLMNOPQR} \\!\" src=\"a9d3a8ae5e05b7bd96f20871e0c1cb96.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{STUVWXYZ} \\!\" src=\"ea8b007cc18c226d2143fd4c43f0cca4.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{abcdefghijklm} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{abcdefghijklm} \\!\" src=\"9f6eb1d0200709ff7caf09f99faa4bd4.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{nopqrstuvwxyz} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{nopqrstuvwxyz} \\!\" src=\"b8dbd6a0585c8b2ce9094a777e2e716e.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathrm{0123456789} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathrm{0123456789} \\!\" src=\"f68e3877be64b002381f33959430445c.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{ABCDEFGHI} \\!\" src=\"8a3b93220f8167b67275c84486fbfefd.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{JKLMNOPQR} \\!\" src=\"c846a434b8192403806e5afa67cb56c8.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{STUVWXYZ} \\!\" src=\"465dc4c154760665cb218bf372b5077b.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{abcdefghijklm} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{abcdefghijklm} \\!\" src=\"ee0e512b5e7b926eb2ad3ccb2e97f99e.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{nopqrstuvwxyz} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{nopqrstuvwxyz} \\!\" src=\"c681c7261b4988870a4d21531838e1ff.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{0123456789} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{0123456789} \\!\" src=\"4c0a1005670f8615d3f6a5e2a3f7ebae.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!\" src=\"563865ef112b2951163ce8e1069f9f8e.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!\" src=\"cdaf253be44a861a7d892226543e6672.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!\" src=\"d3df02b6333f8234da8af066da224e14.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathcal{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathcal{ABCDEFGHI} \\!\" src=\"d728a6ce6448bfd13bfee7b34b988477.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathcal{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathcal{JKLMNOPQR} \\!\" src=\"231d55516d700b93504c5391b0bbd482.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathcal{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathcal{STUVWXYZ} \\!\" src=\"671cdb09089e8aea4d1c10963dff47bb.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{ABCDEFGHI} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{ABCDEFGHI} \\!\" src=\"1086f52f9d3b3a3409c30f9df307803d.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{JKLMNOPQR} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{JKLMNOPQR} \\!\" src=\"c99678db9d429d52ea0eb02bba3b72f6.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{STUVWXYZ} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{STUVWXYZ} \\!\" src=\"de83cd08cc780451bd2330d3d40b1532.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{abcdefghijklm} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{abcdefghijklm} \\!\" src=\"3648203f3849eb6a103cab171143bff5.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{nopqrstuvwxyz} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{nopqrstuvwxyz} \\!\" src=\"61605c6e5c504c766b330ca61d747920.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathfrak{0123456789} \\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathfrak{0123456789} \\!\" src=\"d7ce6e5c0f153732ba276fbfc47f019b.png\" \/>"
|
|
],
|
|
[
|
|
"x y z",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x y z\" src=\"d16fb36f0911f878998c136191af705e.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{x y z}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{x y z}\" src=\"cc6e918f4c63d050ae99d4381c7bb2d5.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{if} n \\text{is even}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{if} n \\text{is even}\" src=\"d2f16386d2a4bbd2fd4b7187fcf73a52.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{if }n\\text{ is even}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{if }n\\text{ is even}\" src=\"82915036ba72b9f1dacfd528d40f4371.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{if}~n\\ \\text{is even}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{if}~n\\ \\text{is even}\" src=\"971bad3f2ace3107b439f9af94476aed.png\" \/>"
|
|
],
|
|
[
|
|
"{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}\" src=\"3220b8a1d12128d1ada4a82d5c3d3723.png\" \/>"
|
|
],
|
|
[
|
|
"x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}\" src=\"443e636a7722cec5d8f7b005deb2433a.png\" \/>"
|
|
],
|
|
[
|
|
"e^{i \\pi} + 1 = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"e^{i \\pi} + 1 = 0\" src=\"f897005615c391e14cd50112cda44665.png\" \/>"
|
|
],
|
|
[
|
|
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0\" src=\"95dfa34eee8b069de07f18e7f3b43cea.png\" \/>"
|
|
],
|
|
[
|
|
"e^{i \\pi} + 1 = 0\\,\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"e^{i \\pi} + 1 = 0\\,\\!\" src=\"9e9a547076c6820b95e439dd1a5d6a32.png\" \/>"
|
|
],
|
|
[
|
|
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0\" src=\"95dfa34eee8b069de07f18e7f3b43cea.png\" \/>"
|
|
],
|
|
[
|
|
"e^{i \\pi} + 1 = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"e^{i \\pi} + 1 = 0\" src=\"f897005615c391e14cd50112cda44665.png\" \/>"
|
|
],
|
|
[
|
|
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0\" src=\"95dfa34eee8b069de07f18e7f3b43cea.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Apricot}\\text{Apricot}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Apricot}\\text{Apricot}\" src=\"b8948aeb7bdca5bd4e18d613ac6c5696.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Aquamarine}\\text{Aquamarine}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Aquamarine}\\text{Aquamarine}\" src=\"fc435c38d6cd34147f1b0562b0e580c0.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Bittersweet}\\text{Bittersweet}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Bittersweet}\\text{Bittersweet}\" src=\"d67b10dd93c2300ee8d13b5099078d1b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Black}\\text{Black}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Black}\\text{Black}\" src=\"364fc160f6c30914ad3d70a6bb551dc6.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Blue}\\text{Blue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Blue}\\text{Blue}\" src=\"5f795126f5d16b97c60578f01b368cd6.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{BlueGreen}\\text{BlueGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{BlueGreen}\\text{BlueGreen}\" src=\"302ea2ab02b2998679c1f973dfb17395.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{BlueViolet}\\text{BlueViolet}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{BlueViolet}\\text{BlueViolet}\" src=\"f7d3a6b44f64ec4d9b289bf8ac436d92.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{BrickRed}\\text{BrickRed}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{BrickRed}\\text{BrickRed}\" src=\"a2f94714d1809cb3f71016db0e8c2315.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Brown}\\text{Brown}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Brown}\\text{Brown}\" src=\"99cfd151aa2998fb6b309c8c50393c32.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{BurntOrange}\\text{BurntOrange}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{BurntOrange}\\text{BurntOrange}\" src=\"3e3b04676ace992e28aaa5608455a289.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{CadetBlue}\\text{CadetBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{CadetBlue}\\text{CadetBlue}\" src=\"fd392c22a7bb76e6203788f0a5e6584b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{CarnationPink}\\text{CarnationPink}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{CarnationPink}\\text{CarnationPink}\" src=\"6079cf2eacc794bf3e99bc9fc233e2d0.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Cerulean}\\text{Cerulean}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Cerulean}\\text{Cerulean}\" src=\"9759c3640f8f5a2cfa5cfa5c4bc64e2f.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{CornflowerBlue}\\text{CornflowerBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{CornflowerBlue}\\text{CornflowerBlue}\" src=\"072ea0cddb81b6996a86c5c60042fc8c.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Cyan}\\text{Cyan}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Cyan}\\text{Cyan}\" src=\"321ecf031772dbe95758cab0dfaa6f27.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Dandelion}\\text{Dandelion}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Dandelion}\\text{Dandelion}\" src=\"78686b75a31528404d2e9b365f892142.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{DarkOrchid}\\text{DarkOrchid}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{DarkOrchid}\\text{DarkOrchid}\" src=\"19bc495f720e6bb920eed9545880e383.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Emerald}\\text{Emerald}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Emerald}\\text{Emerald}\" src=\"b4310eecc8d70893a71a728574dc9f0f.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{ForestGreen}\\text{ForestGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{ForestGreen}\\text{ForestGreen}\" src=\"b89859eb7faadeb40830600590478e6e.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Fuchsia}\\text{Fuchsia}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Fuchsia}\\text{Fuchsia}\" src=\"3073bfb913846b8b74d221b3de291348.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Goldenrod}\\text{Goldenrod}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Goldenrod}\\text{Goldenrod}\" src=\"af66a8061a03abb89bc4d205503d437f.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Gray}\\text{Gray}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Gray}\\text{Gray}\" src=\"1e5478f23b28143107d25266b55ef78a.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Green}\\text{Green}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Green}\\text{Green}\" src=\"9474b1edd45b5aefe4533543fe85bbbd.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{GreenYellow}\\text{GreenYellow}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{GreenYellow}\\text{GreenYellow}\" src=\"906467f5d3fa98cfa97b4194f268d5c7.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{JungleGreen}\\text{JungleGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{JungleGreen}\\text{JungleGreen}\" src=\"f72158890930502ffd7dae256812f7e4.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Lavender}\\text{Lavender}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Lavender}\\text{Lavender}\" src=\"f2fa7339ac0b50f73409f1e05eb77800.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{LimeGreen}\\text{LimeGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{LimeGreen}\\text{LimeGreen}\" src=\"c4c5d14dea2c682d5f4148eab87e332f.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Magenta}\\text{Magenta}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Magenta}\\text{Magenta}\" src=\"d9bfd6c63b5b8c21f53e52a74a75eb97.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Mahogany}\\text{Mahogany}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Mahogany}\\text{Mahogany}\" src=\"dbb2ef205ba8d4d3586b1b9785c54c25.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Maroon}\\text{Maroon}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Maroon}\\text{Maroon}\" src=\"5861b59a922bda9d96cf03cb8a184a8a.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Melon}\\text{Melon}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Melon}\\text{Melon}\" src=\"e9b605ab8c6a1135ac9bb24e540e645b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{MidnightBlue}\\text{MidnightBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{MidnightBlue}\\text{MidnightBlue}\" src=\"3c196c0de1592080c250b05208cb29c1.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Mulberry}\\text{Mulberry}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Mulberry}\\text{Mulberry}\" src=\"78fe49c7ffa31d0309ecad4e17c8533b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{NavyBlue}\\text{NavyBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{NavyBlue}\\text{NavyBlue}\" src=\"b57ac6d698f2a553d1de298b8ae86f55.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{OliveGreen}\\text{OliveGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{OliveGreen}\\text{OliveGreen}\" src=\"1ff90d0c4e6d6901579206062701309a.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Orange}\\text{Orange}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Orange}\\text{Orange}\" src=\"1dd73f756801b262f01f87912b369339.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{OrangeRed}\\text{OrangeRed}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{OrangeRed}\\text{OrangeRed}\" src=\"6df4aca479f5fa8acae9c21141636557.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Orchid}\\text{Orchid}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Orchid}\\text{Orchid}\" src=\"e03e079ac7c0138cc85bb20894e42c7d.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Peach}\\text{Peach}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Peach}\\text{Peach}\" src=\"16a4afaaa911b78f102f2e088c596715.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Periwinkle}\\text{Periwinkle}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Periwinkle}\\text{Periwinkle}\" src=\"104bee7d6969d0403571f7aa65390384.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{PineGreen}\\text{PineGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{PineGreen}\\text{PineGreen}\" src=\"5821d738015d4bae29a90be43c9dc760.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Plum}\\text{Plum}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Plum}\\text{Plum}\" src=\"de3328ac78da89a5e86e1917ec8fb87b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{ProcessBlue}\\text{ProcessBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{ProcessBlue}\\text{ProcessBlue}\" src=\"e20ab4232d3130d086b8de76eee6b53c.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Purple}\\text{Purple}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Purple}\\text{Purple}\" src=\"fefd1c1377e3d29213e81e866583adad.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RawSienna}\\text{RawSienna}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RawSienna}\\text{RawSienna}\" src=\"745d3d1a6a79b318a497e6fbcb57dc02.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Red}\\text{Red}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Red}\\text{Red}\" src=\"9e2052c4c91b5216205fe642a06c5ac1.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RedOrange}\\text{RedOrange}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RedOrange}\\text{RedOrange}\" src=\"2a026699e64707b449d7c3811d752725.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RedViolet}\\text{RedViolet}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RedViolet}\\text{RedViolet}\" src=\"2ac9ad9fbd882591f7971ff477880fe6.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Rhodamine}\\text{Rhodamine}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Rhodamine}\\text{Rhodamine}\" src=\"27d615add22f24e5689271903afd2ea8.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RoyalBlue}\\text{RoyalBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RoyalBlue}\\text{RoyalBlue}\" src=\"6e26c2a826a4d55150b804f2e71444af.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RoyalPurple}\\text{RoyalPurple}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RoyalPurple}\\text{RoyalPurple}\" src=\"dd4a6069922baf4c048592b1bccef491.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{RubineRed}\\text{RubineRed}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{RubineRed}\\text{RubineRed}\" src=\"771e441e86b10ef3db7b7cb90d9570d1.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Salmon}\\text{Salmon}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Salmon}\\text{Salmon}\" src=\"1204c3c0547f50b71bda5357deba7948.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{SeaGreen}\\text{SeaGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{SeaGreen}\\text{SeaGreen}\" src=\"e897b90beb4e669c01a63c3d2ac2d954.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Sepia}\\text{Sepia}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Sepia}\\text{Sepia}\" src=\"e3b0037782599bf00cec26b758627e4b.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{SkyBlue}\\text{SkyBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{SkyBlue}\\text{SkyBlue}\" src=\"03bc1de1505a991d0f8c2db1a9211740.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{SpringGreen}\\text{SpringGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{SpringGreen}\\text{SpringGreen}\" src=\"7de66b44de4a77d808c6ad47e0ba3502.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Tan}\\text{Tan}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Tan}\\text{Tan}\" src=\"6975e0f90106c5e304d39dfebc6ad1d0.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{TealBlue}\\text{TealBlue}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{TealBlue}\\text{TealBlue}\" src=\"2b19a41a6ca9691cdbd5fa9f15665d5a.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Thistle}\\text{Thistle}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Thistle}\\text{Thistle}\" src=\"828c123619d3d3e078aa28bbb362c389.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Turquoise}\\text{Turquoise}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Turquoise}\\text{Turquoise}\" src=\"edbea9eb14e35cbadb5e2df41afae369.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{Violet}\\text{Violet}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{Violet}\\text{Violet}\" src=\"85da72dd0a892dd3364fefd94a14cf7c.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{VioletRed}\\text{VioletRed}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{VioletRed}\\text{VioletRed}\" src=\"9b5d2430fd995e45f7974583ab86db0c.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{WildStrawberry}\\text{WildStrawberry}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{WildStrawberry}\\text{WildStrawberry}\" src=\"0962e3794c0315fd26b9668555ebff1c.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{YellowGreen}\\text{YellowGreen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{YellowGreen}\\text{YellowGreen}\" src=\"72a3756fa95c0da850b33ccb7b3e3900.png\" \/>"
|
|
],
|
|
[
|
|
"\\color{YellowOrange}\\text{YellowOrange}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\color{YellowOrange}\\text{YellowOrange}\" src=\"119eb093f2ffcbd3d77a13f55f185f52.png\" \/>"
|
|
],
|
|
[
|
|
"a \\qquad b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a \\qquad b\" src=\"e505263bc9c94f673c580f3a36a7f08a.png\" \/>"
|
|
],
|
|
[
|
|
"a \\quad b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a \\quad b\" src=\"da8c1d9effa4501fd80c054e59ad917d.png\" \/>"
|
|
],
|
|
[
|
|
"a\\ b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a\\ b\" src=\"692d4bffca8e84ffb45cf9d5facf31d6.png\" \/>"
|
|
],
|
|
[
|
|
"a \\mbox{ } b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a \\mbox{ } b\" src=\"a2dcf5a19724cb3344c10f6da10ad886.png\" \/>"
|
|
],
|
|
[
|
|
"a\\;b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a\\;b\" src=\"b5ade5d5393fd7727bf77fa44ec8b564.png\" \/>"
|
|
],
|
|
[
|
|
"a\\,b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a\\,b\" src=\"7bea99aed60ba5e1fe8a134ab43fa85f.png\" \/>"
|
|
],
|
|
[
|
|
"ab",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"ab\" src=\"187ef4436122d1cc2f40dc2b92f0eba0.png\" \/>"
|
|
],
|
|
[
|
|
"\\mathit{ab}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\mathit{ab}\" src=\"9eb2e32cf7426cbd216d0dca18e6584e.png\" \/>"
|
|
],
|
|
[
|
|
"a\\!b",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"a\\!b\" src=\"0fbcad5fadb912e8afa6d113a75c83e4.png\" \/>"
|
|
],
|
|
[
|
|
"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots\" src=\"42fbce9ee33ec5113992c9a867bfddf3.png\" \/>"
|
|
],
|
|
[
|
|
"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}\" src=\"d3acbcf21e8a90a92f676359b7def515.png\" \/>"
|
|
],
|
|
[
|
|
"\\int_{-N}^{N} e^x\\, dx",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int_{-N}^{N} e^x\\, dx\" src=\"4e053ca66cfc79a2397c40aa34c66a25.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{i=0}^\\infty 2^{-i}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{i=0}^\\infty 2^{-i}\" src=\"af926e99e79600018438bc1ddea6da71.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 \" src=\"4f3cab8bdfda51452401e6897c24319a.png\" \/>"
|
|
],
|
|
[
|
|
"\\iint",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iint\" src=\"0e66f8f6b272ca5db6f0b3f1c63a7560.png\" \/>"
|
|
],
|
|
[
|
|
"\\oint",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\oint\" src=\"058bf10c50ba4ee074da24c60a590314.png\" \/>"
|
|
],
|
|
[
|
|
"\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A\" src=\"2e1f7e4168ae003494bbec19102f4967.png\" \/>"
|
|
],
|
|
[
|
|
"\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A\" src=\"4d0e5fd5543dece7d0ff39eff990efbb.png\" \/>"
|
|
],
|
|
[
|
|
"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A\" src=\"1990fe2f58972e93f7d23b3902ca925b.png\" \/>"
|
|
],
|
|
[
|
|
"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A\" src=\"dc59fde59ad9a9ab03d6e0eafdb6e65a.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle S}\" src=\"7ff140fff7dde71951767d28cb5304ac.png\" \/>"
|
|
],
|
|
[
|
|
"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} \" src=\"f6d35e69f3593017cdd38fbf8e798a9f.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle S}\" src=\"7ff140fff7dde71951767d28cb5304ac.png\" \/>"
|
|
],
|
|
[
|
|
"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} \" src=\"f6d35e69f3593017cdd38fbf8e798a9f.png\" \/>"
|
|
],
|
|
[
|
|
"\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 \" src=\"0f3f1a7580395190da1d7e7bba5a72e6.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle S}\" src=\"7ff140fff7dde71951767d28cb5304ac.png\" \/>"
|
|
],
|
|
[
|
|
"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}\" src=\"39a571d0f6a01877c10d8790a5943eab.png\" \/>"
|
|
],
|
|
[
|
|
"\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 \" src=\"229ef1d17720ecf0b771d0783ce81c24.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle S}\" src=\"7ff140fff7dde71951767d28cb5304ac.png\" \/>"
|
|
],
|
|
[
|
|
"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}\" src=\"39a571d0f6a01877c10d8790a5943eab.png\" \/>"
|
|
],
|
|
[
|
|
"\\bold{P} = ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bold{P} = \" src=\"5b2cfaf066bee44f213c6c2882e172c7.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle \\partial \\Omega}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle \\partial \\Omega}\" src=\"30c24016df2b868da4e3a8ec58e45ce7.png\" \/>"
|
|
],
|
|
[
|
|
"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0\" src=\"7357641bffa0e625f2d806b7357b7ee5.png\" \/>"
|
|
],
|
|
[
|
|
"\\bold{P} = ",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bold{P} = \" src=\"5b2cfaf066bee44f213c6c2882e172c7.png\" \/>"
|
|
],
|
|
[
|
|
"{\\scriptstyle \\partial \\Omega}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{\\scriptstyle \\partial \\Omega}\" src=\"30c24016df2b868da4e3a8ec58e45ce7.png\" \/>"
|
|
],
|
|
[
|
|
"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0\" src=\"7357641bffa0e625f2d806b7357b7ee5.png\" \/>"
|
|
],
|
|
[
|
|
"\\overset{\\frown}{AB}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\overset{\\frown}{AB}\" src=\"8748475980cbfc9c9028b4b298d2f438.png\" \/>"
|
|
],
|
|
[
|
|
"ax^2 + bx + c = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"ax^2 + bx + c = 0\" src=\"0c4913db725b72609d4825124dda12aa.png\" \/>"
|
|
],
|
|
[
|
|
"ax^2 + bx + c = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"ax^2 + bx + c = 0\" src=\"0c4913db725b72609d4825124dda12aa.png\" \/>"
|
|
],
|
|
[
|
|
"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}\" src=\"a1f76f347b763aa6fc880cbc641fc29f.png\" \/>"
|
|
],
|
|
[
|
|
"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}\" src=\"a1f76f347b763aa6fc880cbc641fc29f.png\" \/>"
|
|
],
|
|
[
|
|
"2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)\" src=\"894f312e78ebc09a4e78c11b79cf4a8c.png\" \/>"
|
|
],
|
|
[
|
|
"2 = \\left(\n\\frac{\\left(3-x\\right) \\times 2}{3-x}\n\\right)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)\" src=\"894f312e78ebc09a4e78c11b79cf4a8c.png\" \/>"
|
|
],
|
|
[
|
|
"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}\" src=\"aa0dc58e7114c5b91f6113130dcbc1d5.png\" \/>"
|
|
],
|
|
[
|
|
"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}\" src=\"aa0dc58e7114c5b91f6113130dcbc1d5.png\" \/>"
|
|
],
|
|
[
|
|
"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy\" src=\"4465ba032469b775777205effe6cdc0f.png\" \/>"
|
|
],
|
|
[
|
|
"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds\n= \\int_a^x f(y)(x-y)\\,dy",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy\" src=\"4465ba032469b775777205effe6cdc0f.png\" \/>"
|
|
],
|
|
[
|
|
"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0\" src=\"691187249f1e86a2e459362d66b5a743.png\" \/>"
|
|
],
|
|
[
|
|
"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0\" src=\"691187249f1e86a2e459362d66b5a743.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{i=0}^{n-1} i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{i=0}^{n-1} i\" src=\"9c3090bae1d9eccd9e1747ecc51eaece.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{i=0}^{n-1} i",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{i=0}^{n-1} i\" src=\"9c3090bae1d9eccd9e1747ecc51eaece.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}\" src=\"5cd6041b50d619f041f121baea301898.png\" \/>"
|
|
],
|
|
[
|
|
"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}\n{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n} {3^m\\left(m\\,3^n+n\\,3^m\\right)}\" src=\"5cd6041b50d619f041f121baea301898.png\" \/>"
|
|
],
|
|
[
|
|
"u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"u'' + p(x)u' + q(x)u=f(x),\\quad x>a\" src=\"d7b3799aedae667fcc79b43ba678b94a.png\" \/>"
|
|
],
|
|
[
|
|
"u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"u'' + p(x)u' + q(x)u=f(x),\\quad x>a\" src=\"d7b3799aedae667fcc79b43ba678b94a.png\" \/>"
|
|
],
|
|
[
|
|
"|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)\" src=\"2eac34dbc8ebbccb22ce8dfe9d5c1a86.png\" \/>"
|
|
],
|
|
[
|
|
"|\\bar{z}| = |z|,\n|(\\bar{z})^n| = |z|^n,\n\\arg(z^n) = n \\arg(z)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)\" src=\"2eac34dbc8ebbccb22ce8dfe9d5c1a86.png\" \/>"
|
|
],
|
|
[
|
|
"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)\" src=\"02122c7e5ff915c4616fb457747c8bf4.png\" \/>"
|
|
],
|
|
[
|
|
"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)\" src=\"02122c7e5ff915c4616fb457747c8bf4.png\" \/>"
|
|
],
|
|
[
|
|
"\\phi_n(\\kappa)\n= \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\phi_n(\\kappa) = \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR\" src=\"7fb11db1e8b5890998b2f0f59f0e3d60.png\" \/>"
|
|
],
|
|
[
|
|
"\\phi_n(\\kappa) =\n\\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty\n\\frac{\\sin(\\kappa R)}{\\kappa R}\n\\frac{\\partial}{\\partial R}\n\\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\phi_n(\\kappa) = \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR\" src=\"7fb11db1e8b5890998b2f0f59f0e3d60.png\" \/>"
|
|
],
|
|
[
|
|
"\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}\" src=\"8f72d606f5f91bd51583a0a08b36eed9.png\" \/>"
|
|
],
|
|
[
|
|
"\\phi_n(\\kappa) =\n0.033C_n^2\\kappa^{-11\/3},\\quad\n\\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}\" src=\"8f72d606f5f91bd51583a0a08b36eed9.png\" \/>"
|
|
],
|
|
[
|
|
"f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\ \\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}\" src=\"3e3579f4c1c6a95f181f227fd3ede7de.png\" \/>"
|
|
],
|
|
[
|
|
"\nf(x) =\n\\begin{cases}\n1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\\n1 - x^2 & \\text{otherwise}\n\\end{cases}\n",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" f(x) = \\begin{cases} 1 & -1 \\le x < 0 \\\\ \\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise} \\end{cases} \" src=\"3e3579f4c1c6a95f181f227fd3ede7de.png\" \/>"
|
|
],
|
|
[
|
|
"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}\" src=\"c02cbc6ec9c57aca74ebc3a0314dea79.png\" \/>"
|
|
],
|
|
[
|
|
"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)\n= \\sum_{n=0}^\\infty\n\\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\n\\frac{z^n}{n!}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n} \\frac{z^n}{n!}\" src=\"c02cbc6ec9c57aca74ebc3a0314dea79.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{a}{b}\\ \\tfrac{a}{b}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{a}{b}\\ \\tfrac{a}{b}\" src=\"54e172be623599fef29e40733c94895e.png\" \/>"
|
|
],
|
|
[
|
|
"\\frac{a}{b}\\ \\tfrac{a}{b}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\frac{a}{b}\\ \\tfrac{a}{b}\" src=\"54e172be623599fef29e40733c94895e.png\" \/>"
|
|
],
|
|
[
|
|
"S=dD\\,\\sin\\alpha\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"S=dD\\,\\sin\\alpha\\!\" src=\"385776efb87d3eb7fe18587efd484ef5.png\" \/>"
|
|
],
|
|
[
|
|
"S=dD\\,\\sin\\alpha\\!",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"S=dD\\,\\sin\\alpha\\!\" src=\"385776efb87d3eb7fe18587efd484ef5.png\" \/>"
|
|
],
|
|
[
|
|
"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]\" src=\"624bfa733e479dff276edfdc7b1b8f6a.png\" \/>"
|
|
],
|
|
[
|
|
"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]\" src=\"624bfa733e479dff276edfdc7b1b8f6a.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{align} u & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\ v & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v) \\end{align}\" src=\"787eb92e00313cb866a89579fde92108.png\" \/>"
|
|
],
|
|
[
|
|
"\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\begin{align} u & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\ v & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v) \\end{align}\" src=\"787eb92e00313cb866a89579fde92108.png\" \/>"
|
|
],
|
|
[
|
|
" with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|<math>2+2",
|
|
"<strong class='error texerror'>Failed to parse (syntax error): with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped &lt;math&gt; tags. [[Image:foobar.jpg|thumb|<math>2+2<\/strong>\n"
|
|
],
|
|
[
|
|
" with a thumbnail- math enabled [[Image:foobar.jpg|thumb|<math>2+2",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\" with a thumbnail- math enabled [[Image:foobar.jpg|thumb|<math>2+2\" src=\"4b1d6eacd0bcc60a0aadf0d34626ee74.png\" \/>"
|
|
],
|
|
[
|
|
"<script>alert(document.cookies);<\/script>",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"<script>alert(document.cookies);<\/script>\" src=\"59f1117d63b4ce95a694d44b588f0840.png\" \/>"
|
|
],
|
|
[
|
|
"\\widehat{x}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\widehat{x}\" src=\"260a7a181658b82549b23574d4bf476b.png\" \/>"
|
|
],
|
|
[
|
|
"\\widetilde{x}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\widetilde{x}\" src=\"4848f7a70999ab4e0ca9d205efa3cd04.png\" \/>"
|
|
],
|
|
[
|
|
"\\euro 200",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\euro 200\" src=\"18867d4c568a19ae7b2388346e504ec3.png\" \/>"
|
|
],
|
|
[
|
|
"\\geneuro",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\geneuro\" src=\"98b63c235ee187a38267e0e170b10e9d.png\" \/>"
|
|
],
|
|
[
|
|
"\\geneuronarrow",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\geneuronarrow\" src=\"aa4a1ed370f4ee705c6930384bf89502.png\" \/>"
|
|
],
|
|
[
|
|
"\\geneurowide",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\geneurowide\" src=\"4404468e6187fb04e4f7e1f15e550825.png\" \/>"
|
|
],
|
|
[
|
|
"\\officialeuro",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\officialeuro\" src=\"d708de0eed23dbd6f02b99ea9073547b.png\" \/>"
|
|
],
|
|
[
|
|
"\\digamma",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\digamma\" src=\"2f057b6e514c8ca2d9cf9a3e549f8865.png\" \/>"
|
|
],
|
|
[
|
|
"\\Coppa\\coppa\\varcoppa",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Coppa\\coppa\\varcoppa\" src=\"8308ee5003aa36112414cad8ef874f85.png\" \/>"
|
|
],
|
|
[
|
|
"\\Digamma",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Digamma\" src=\"5cfd6e5df6c87798542dca2e22c1e7cb.png\" \/>"
|
|
],
|
|
[
|
|
"\\Koppa\\koppa",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Koppa\\koppa\" src=\"52593a0cdac178d165985ac014788b97.png\" \/>"
|
|
],
|
|
[
|
|
"\\Sampi\\sampi",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Sampi\\sampi\" src=\"e9dabb19e4c27bf23d3c2a3629474562.png\" \/>"
|
|
],
|
|
[
|
|
"\\Stigma\\stigma\\varstigma",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\Stigma\\stigma\\varstigma\" src=\"7b9233276816994a33a5e968202cef6e.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{next years}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{next years}\" src=\"6691dbc0b36631a68b78dd5ace256d80.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{next year's}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{next year's}\" src=\"236fd262b1976d04bc0e7a969d61aede.png\" \/>"
|
|
],
|
|
[
|
|
"\\text{`next' year}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\text{`next' year}\" src=\"05854b483a833f067cb6ae72319b44bc.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin x",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin x\" src=\"cdba58911c590ced3e2435dfa39f6873.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin(x)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin(x)\" src=\"3e21673ce6c9b09f9ec50b7237248576.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin{x}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin{x}\" src=\"fb5551723991d4dcb974a23c162ae813.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin x \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin x \\,\" src=\"76a8e1a01bd233c1e4e16d63b2bbf939.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin(x) \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin(x) \\,\" src=\"16c69b0a3658d3b398f72c518d869a03.png\" \/>"
|
|
],
|
|
[
|
|
"\\sin{x} \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sin{x} \\,\" src=\"839639707da39f691e702c2399cbf943.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen x",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen x\" src=\"fb82a78d580396c62cecb4cf018f3769.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen(x)",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen(x)\" src=\"83a10e6756c8e59055178dc1f593130a.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen{x}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen{x}\" src=\"04fde4f7a7e478015066f378050b1979.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen x \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen x \\,\" src=\"0ac592b8f31b4698766c50c532f446a7.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen(x) \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen(x) \\,\" src=\"bb5469d24fcdd52aa60cb9ee90ba697d.png\" \/>"
|
|
],
|
|
[
|
|
"\\sen{x} \\,",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\sen{x} \\,\" src=\"d4882a4bcf5db1da3e30d905da8b394e.png\" \/>"
|
|
],
|
|
[
|
|
"\\operatorname{sen}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\operatorname{sen}\" src=\"fa9660c7eb053ca8d3c9a87fa86635d9.png\" \/>"
|
|
],
|
|
[
|
|
"\\dot \\vec B",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\dot \\vec B\" src=\"e64939568ecb506a86a392373cec0458.png\" \/>"
|
|
],
|
|
[
|
|
"\\tilde \\mathcal{M}",
|
|
"<img class=\"mwe-math-fallback-image-inline tex\" alt=\"\\tilde \\mathcal{M}\" src=\"55072ce6ef8c840c4b7687bd8a028bde.png\" \/>"
|
|
],
|
|
[
|
|
"",
|
|
"<strong class='error texerror'>Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): <\/strong>\n"
|
|
],
|
|
[
|
|
" ",
|
|
"<strong class='error texerror'>Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): <\/strong>\n"
|
|
]
|
|
] |