a:449:{i:0;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"";}i:1;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"";}i:2;a:2:{i:0;s:67:"\definecolor{red}{RGB}{255,0,0}\pagecolor{red}e^{i \pi} + 1 = 0\,\!";i:1;s:184:"";}i:3;a:2:{i:0;s:10:"\text{abc}";i:1;s:127:"";}i:4;a:2:{i:0;s:10:"\alpha\,\!";i:1;s:127:"";}i:5;a:2:{i:0;s:15:" f(x) = x^2\,\!";i:1;s:132:"";}i:6;a:2:{i:0;s:8:"\sqrt{2}";i:1;s:125:"";}i:7;a:2:{i:0;s:14:"\sqrt{1-e^2}\!";i:1;s:131:"";}i:8;a:2:{i:0;s:14:"\sqrt{1-z^3}\!";i:1;s:131:"";}i:9;a:2:{i:0;s:1:"x";i:1;s:118:"";}i:10;a:2:{i:0;s:42:"\dot{a}, \ddot{a}, \acute{a}, \grave{a} \!";i:1;s:159:"";}i:11;a:2:{i:0;s:43:"\check{a}, \breve{a}, \tilde{a}, \bar{a} \!";i:1;s:160:"";}i:12;a:2:{i:0;s:32:"\hat{a}, \widehat{a}, \vec{a} \!";i:1;s:149:"";}i:13;a:2:{i:0;s:37:"\exp_a b = a^b, \exp b = e^b, 10^m \!";i:1;s:154:"";}i:14;a:2:{i:0;s:37:"\ln c, \lg d = \log e, \log_{10} f \!";i:1;s:154:"";}i:15;a:2:{i:0;s:48:"\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\!";i:1;s:165:"";}i:16;a:2:{i:0;s:34:"\arcsin h, \arccos i, \arctan j \!";i:1;s:151:"";}i:17;a:2:{i:0;s:37:"\sinh k, \cosh l, \tanh m, \coth n \!";i:1;s:154:"";}i:18;a:2:{i:0;s:91:"\operatorname{sh}\,k, \operatorname{ch}\,l, \operatorname{th}\,m, \operatorname{coth}\,n \!";i:1;s:208:"";}i:19;a:2:{i:0;s:76:"\operatorname{argsh}\,o, \operatorname{argch}\,p, \operatorname{argth}\,q \!";i:1;s:193:"";}i:20;a:2:{i:0;s:35:"\sgn r, \left\vert s \right\vert \!";i:1;s:152:"";}i:21;a:2:{i:0;s:23:"\min(x,y), \max(x,y) \!";i:1;s:140:"";}i:22;a:2:{i:0;s:33:"\min x, \max y, \inf s, \sup t \!";i:1;s:150:"";}i:23;a:2:{i:0;s:31:"\lim u, \liminf v, \limsup w \!";i:1;s:148:"";}i:24;a:2:{i:0;s:35:"\dim p, \deg q, \det m, \ker\phi \!";i:1;s:152:"";}i:25;a:2:{i:0;s:41:"\Pr j, \hom l, \lVert z \rVert, \arg z \!";i:1;s:158:"";}i:26;a:2:{i:0;s:49:"dt, \operatorname{d}\!t, \partial t, \nabla\psi\!";i:1;s:166:"";}i:27;a:2:{i:0;s:155:"dy/dx, \operatorname{d}\!y/\operatorname{d}\!x, {dy \over dx}, {\operatorname{d}\!y\over\operatorname{d}\!x}, {\partial^2\over\partial x_1\partial x_2}y \!";i:1;s:272:"";}i:28;a:2:{i:0;s:66:"\prime, \backprime, f^\prime, f', f'', f^{(3)} \!, \dot y, \ddot y";i:1;s:198:"";}i:29;a:2:{i:0;s:64:"\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar \!";i:1;s:181:"";}i:30;a:2:{i:0;s:62:"\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS \!";i:1;s:179:"";}i:31;a:2:{i:0;s:24:"s_k \equiv 0 \pmod{m} \!";i:1;s:141:"";}i:32;a:2:{i:0;s:14:"a\,\bmod\,b \!";i:1;s:131:"";}i:33;a:2:{i:0;s:36:"\gcd(m, n), \operatorname{lcm}(m, n)";i:1;s:153:"";}i:34;a:2:{i:0;s:37:"\mid, \nmid, \shortmid, \nshortmid \!";i:1;s:154:"";}i:35;a:2:{i:0;s:57:"\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{x^3+y^3 \over 2} \!";i:1;s:174:"";}i:36;a:2:{i:0;s:27:"+, -, \pm, \mp, \dotplus \!";i:1;s:144:"";}i:37;a:2:{i:0;s:46:"\times, \div, \divideontimes, /, \backslash \!";i:1;s:163:"";}i:38;a:2:{i:0;s:39:"\cdot, * \ast, \star, \circ, \bullet \!";i:1;s:156:"";}i:39;a:2:{i:0;s:42:"\boxplus, \boxminus, \boxtimes, \boxdot \!";i:1;s:159:"";}i:40;a:2:{i:0;s:42:"\oplus, \ominus, \otimes, \oslash, \odot\!";i:1;s:159:"";}i:41;a:2:{i:0;s:42:"\circleddash, \circledcirc, \circledast \!";i:1;s:159:"";}i:42;a:2:{i:0;s:34:"\bigoplus, \bigotimes, \bigodot \!";i:1;s:151:"";}i:43;a:2:{i:0;s:42:"\{ \}, \O \empty \emptyset, \varnothing \!";i:1;s:159:"";}i:44;a:2:{i:0;s:36:"\in, \notin \not\in, \ni, \not\ni \!";i:1;s:153:"";}i:45;a:2:{i:0;s:30:"\cap, \Cap, \sqcap, \bigcap \!";i:1;s:147:"";}i:46;a:2:{i:0;s:60:"\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus \!";i:1;s:177:"";}i:47;a:2:{i:0;s:36:"\setminus, \smallsetminus, \times \!";i:1;s:153:"";}i:48;a:2:{i:0;s:30:"\subset, \Subset, \sqsubset \!";i:1;s:147:"";}i:49;a:2:{i:0;s:30:"\supset, \Supset, \sqsupset \!";i:1;s:147:"";}i:50;a:2:{i:0;s:64:"\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq \!";i:1;s:181:"";}i:51;a:2:{i:0;s:64:"\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq \!";i:1;s:181:"";}i:52;a:2:{i:0;s:55:"\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq \!";i:1;s:172:"";}i:53;a:2:{i:0;s:55:"\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq \!";i:1;s:172:"";}i:54;a:2:{i:0;s:35:"=, \ne, \neq, \equiv, \not\equiv \!";i:1;s:152:"";}i:55;a:2:{i:0;s:64:"\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := \!";i:1;s:181:"";}i:56;a:2:{i:0;s:78:"\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong \!";i:1;s:195:"";}i:57;a:2:{i:0;s:64:"\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto \!";i:1;s:181:"";}i:58;a:2:{i:0;s:52:"<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot \!";i:1;s:172:"";}i:59;a:2:{i:0;s:50:">, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot \!";i:1;s:170:"";}i:60;a:2:{i:0;s:53:"\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq \!";i:1;s:170:"";}i:61;a:2:{i:0;s:53:"\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq \!";i:1;s:170:"";}i:62;a:2:{i:0;s:66:"\lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless \!";i:1;s:183:"";}i:63;a:2:{i:0;s:38:"\leqslant, \nleqslant, \eqslantless \!";i:1;s:155:"";}i:64;a:2:{i:0;s:37:"\geqslant, \ngeqslant, \eqslantgtr \!";i:1;s:154:"";}i:65;a:2:{i:0;s:43:"\lesssim, \lnsim, \lessapprox, \lnapprox \!";i:1;s:160:"";}i:66;a:2:{i:0;s:42:" \gtrsim, \gnsim, \gtrapprox, \gnapprox \,";i:1;s:159:"";}i:67;a:2:{i:0;s:46:"\prec, \nprec, \preceq, \npreceq, \precneqq \!";i:1;s:163:"";}i:68;a:2:{i:0;s:46:"\succ, \nsucc, \succeq, \nsucceq, \succneqq \!";i:1;s:163:"";}i:69;a:2:{i:0;s:29:"\preccurlyeq, \curlyeqprec \,";i:1;s:146:"";}i:70;a:2:{i:0;s:29:"\succcurlyeq, \curlyeqsucc \,";i:1;s:146:"";}i:71;a:2:{i:0;s:49:"\precsim, \precnsim, \precapprox, \precnapprox \,";i:1;s:166:"";}i:72;a:2:{i:0;s:49:"\succsim, \succnsim, \succapprox, \succnapprox \,";i:1;s:166:"";}i:73;a:2:{i:0;s:57:"\parallel, \nparallel, \shortparallel, \nshortparallel \!";i:1;s:174:"";}i:74;a:2:{i:0;s:59:"\perp, \angle, \sphericalangle, \measuredangle, 45^\circ \!";i:1;s:176:"";}i:75;a:2:{i:0;s:75:"\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar \!";i:1;s:192:"";}i:76;a:2:{i:0;s:55:"\bigcirc, \triangle \bigtriangleup, \bigtriangledown \!";i:1;s:172:"";}i:77;a:2:{i:0;s:29:"\vartriangle, \triangledown\!";i:1;s:146:"";}i:78;a:2:{i:0;s:78:"\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright \!";i:1;s:195:"";}i:79;a:2:{i:0;s:29:"\forall, \exists, \nexists \!";i:1;s:146:"";}i:80;a:2:{i:0;s:29:"\therefore, \because, \And \!";i:1;s:146:"";}i:81;a:2:{i:0;s:36:"\or \lor \vee, \curlyvee, \bigvee \!";i:1;s:153:"";}i:82;a:2:{i:0;s:44:"\and \land \wedge, \curlywedge, \bigwedge \!";i:1;s:161:"";}i:83;a:2:{i:0;s:52:"\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, \!";i:1;s:169:"";}i:84;a:2:{i:0;s:47:"\lnot \neg, \not\operatorname{R}, \bot, \top \!";i:1;s:164:"";}i:85;a:2:{i:0;s:41:"\vdash \dashv, \vDash, \Vdash, \models \!";i:1;s:158:"";}i:86;a:2:{i:0;s:42:"\Vvdash \nvdash \nVdash \nvDash \nVDash \!";i:1;s:159:"";}i:87;a:2:{i:0;s:42:"\ulcorner \urcorner \llcorner \lrcorner \,";i:1;s:159:"";}i:88;a:2:{i:0;s:28:"\Rrightarrow, \Lleftarrow \!";i:1;s:145:"";}i:89;a:2:{i:0;s:53:"\Rightarrow, \nRightarrow, \Longrightarrow \implies\!";i:1;s:170:"";}i:90;a:2:{i:0;s:42:"\Leftarrow, \nLeftarrow, \Longleftarrow \!";i:1;s:159:"";}i:91;a:2:{i:0;s:62:"\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff \!";i:1;s:179:"";}i:92;a:2:{i:0;s:37:"\Uparrow, \Downarrow, \Updownarrow \!";i:1;s:154:"";}i:93;a:2:{i:0;s:48:"\rightarrow \to, \nrightarrow, \longrightarrow\!";i:1;s:165:"";}i:94;a:2:{i:0;s:47:"\leftarrow \gets, \nleftarrow, \longleftarrow\!";i:1;s:164:"";}i:95;a:2:{i:0;s:57:"\leftrightarrow, \nleftrightarrow, \longleftrightarrow \!";i:1;s:174:"";}i:96;a:2:{i:0;s:37:"\uparrow, \downarrow, \updownarrow \!";i:1;s:154:"";}i:97;a:2:{i:0;s:41:"\nearrow, \swarrow, \nwarrow, \searrow \!";i:1;s:158:"";}i:98;a:2:{i:0;s:23:"\mapsto, \longmapsto \!";i:1;s:140:"";}i:99;a:2:{i:0;s:174:"\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!";i:1;s:291:"";}i:100;a:2:{i:0;s:121:"\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \,\!";i:1;s:238:"";}i:101;a:2:{i:0;s:123:"\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \,\!";i:1;s:240:"";}i:102;a:2:{i:0;s:118:"\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \!";i:1;s:235:"";}i:103;a:2:{i:0;s:49:"\amalg \P \S \% \dagger \ddagger \ldots \cdots \!";i:1;s:166:"";}i:104;a:2:{i:0;s:48:"\smile \frown \wr \triangleleft \triangleright\!";i:1;s:165:"";}i:105;a:2:{i:0;s:82:"\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp \!";i:1;s:199:"";}i:106;a:2:{i:0;s:80:"\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \!";i:1;s:197:"";}i:107;a:2:{i:0;s:84:"\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \!";i:1;s:201:"";}i:108;a:2:{i:0;s:66:"\intercal \barwedge \veebar \doublebarwedge \between \pitchfork \!";i:1;s:183:"";}i:109;a:2:{i:0;s:68:"\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \!";i:1;s:185:"";}i:110;a:2:{i:0;s:70:"\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \!";i:1;s:187:"";}i:111;a:2:{i:0;s:3:"a^2";i:1;s:120:"";}i:112;a:2:{i:0;s:3:"a_2";i:1;s:120:"";}i:113;a:2:{i:0;s:15:"10^{30} a^{2+2}";i:1;s:132:"";}i:114;a:2:{i:0;s:14:"a_{i,j} b_{f'}";i:1;s:136:"";}i:115;a:2:{i:0;s:5:"x_2^3";i:1;s:122:"";}i:116;a:2:{i:0;s:12:"{x_2}^3 \,\!";i:1;s:129:"";}i:117;a:2:{i:0;s:11:"10^{10^{8}}";i:1;s:128:"";}i:118;a:2:{i:0;s:29:"\sideset{_1^2}{_3^4}\prod_a^b";i:1;s:146:"";}i:119;a:2:{i:0;s:18:"{}_1^2\!\Omega_3^4";i:1;s:135:"";}i:120;a:2:{i:0;s:24:"\overset{\alpha}{\omega}";i:1;s:141:"";}i:121;a:2:{i:0;s:25:"\underset{\alpha}{\omega}";i:1;s:142:"";}i:122;a:2:{i:0;s:43:"\overset{\alpha}{\underset{\gamma}{\omega}}";i:1;s:160:"";}i:123;a:2:{i:0;s:25:"\stackrel{\alpha}{\omega}";i:1;s:142:"";}i:124;a:2:{i:0;s:16:"x', y'', f', f''";i:1;s:163:"";}i:125;a:2:{i:0;s:26:"x^\prime, y^{\prime\prime}";i:1;s:143:"";}i:126;a:2:{i:0;s:17:"\dot{x}, \ddot{x}";i:1;s:134:"";}i:127;a:2:{i:0;s:25:" \hat a \ \bar b \ \vec c";i:1;s:142:"";}i:128;a:2:{i:0;s:61:" \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}";i:1;s:178:"";}i:129;a:2:{i:0;s:37:" \overline{g h i} \ \underline{j k l}";i:1;s:154:"";}i:130;a:2:{i:0;s:21:"\overset{\frown} {AB}";i:1;s:138:"";}i:131;a:2:{i:0;s:53:" A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C";i:1;s:170:"";}i:132;a:2:{i:0;s:35:"\overbrace{ 1+2+\cdots+100 }^{5050}";i:1;s:152:"";}i:133;a:2:{i:0;s:32:"\underbrace{ a+b+\cdots+z }_{26}";i:1;s:149:"";}i:134;a:2:{i:0;s:16:"\sum_{k=1}^N k^2";i:1;s:133:"";}i:135;a:2:{i:0;s:27:"\textstyle \sum_{k=1}^N k^2";i:1;s:144:"";}i:136;a:2:{i:0;s:26:"\frac{\sum_{k=1}^N k^2}{a}";i:1;s:143:"";}i:137;a:2:{i:0;s:40:"\frac{\displaystyle \sum_{k=1}^N k^2}{a}";i:1;s:157:"";}i:138;a:2:{i:0;s:36:"\frac{\sum\limits^{^N}_{k=1} k^2}{a}";i:1;s:153:"";}i:139;a:2:{i:0;s:17:"\prod_{i=1}^N x_i";i:1;s:134:"";}i:140;a:2:{i:0;s:28:"\textstyle \prod_{i=1}^N x_i";i:1;s:145:"";}i:141;a:2:{i:0;s:19:"\coprod_{i=1}^N x_i";i:1;s:136:"";}i:142;a:2:{i:0;s:30:"\textstyle \coprod_{i=1}^N x_i";i:1;s:147:"";}i:143;a:2:{i:0;s:22:"\lim_{n \to \infty}x_n";i:1;s:139:"";}i:144;a:2:{i:0;s:33:"\textstyle \lim_{n \to \infty}x_n";i:1;s:150:"";}i:145;a:2:{i:0;s:41:"\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx";i:1;s:158:"";}i:146;a:2:{i:0;s:34:"\int_{1}^{3}\frac{e^3/x}{x^2}\, dx";i:1;s:151:"";}i:147;a:2:{i:0;s:40:"\textstyle \int\limits_{-N}^{N} e^x\, dx";i:1;s:157:"";}i:148;a:2:{i:0;s:33:"\textstyle \int_{-N}^{N} e^x\, dx";i:1;s:150:"";}i:149;a:2:{i:0;s:24:"\iint\limits_D \, dx\,dy";i:1;s:141:"";}i:150;a:2:{i:0;s:29:"\iiint\limits_E \, dx\,dy\,dz";i:1;s:146:"";}i:151;a:2:{i:0;s:34:"\iiiint\limits_F \, dx\,dy\,dz\,dt";i:1;s:151:"";}i:152;a:2:{i:0;s:38:"\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy";i:1;s:155:"";}i:153;a:2:{i:0;s:39:"\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy";i:1;s:156:"";}i:154;a:2:{i:0;s:20:"\bigcap_{i=_1}^n E_i";i:1;s:137:"";}i:155;a:2:{i:0;s:20:"\bigcup_{i=_1}^n E_i";i:1;s:137:"";}i:156;a:2:{i:0;s:15:"\frac{2}{4}=0.5";i:1;s:132:"";}i:157;a:2:{i:0;s:18:"\tfrac{2}{4} = 0.5";i:1;s:135:"";}i:158;a:2:{i:0;s:72:"\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a";i:1;s:189:"";}i:159;a:2:{i:0;s:46:"\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a";i:1;s:163:"";}i:160;a:2:{i:0;s:60:"\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}";i:1;s:177:"";}i:161;a:2:{i:0;s:12:"\binom{n}{k}";i:1;s:129:"";}i:162;a:2:{i:0;s:13:"\tbinom{n}{k}";i:1;s:130:"";}i:163;a:2:{i:0;s:13:"\dbinom{n}{k}";i:1;s:130:"";}i:164;a:2:{i:0;s:42:"\begin{matrix} x & y \\ z & v
\end{matrix}";i:1;s:171:"";}i:165;a:2:{i:0;s:44:"\begin{vmatrix} x & y \\ z & v
\end{vmatrix}";i:1;s:173:"";}i:166;a:2:{i:0;s:44:"\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}";i:1;s:173:"";}i:167;a:2:{i:0;s:90:"\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix} ";i:1;s:239:"";}i:168;a:2:{i:0;s:44:"\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}";i:1;s:173:"";}i:169;a:2:{i:0;s:44:"\begin{pmatrix} x & y \\ z & v
\end{pmatrix}";i:1;s:173:"";}i:170;a:2:{i:0;s:63:"
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
";i:1;s:204:"";}i:171;a:2:{i:0;s:104:"f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases} ";i:1;s:245:"";}i:172;a:2:{i:0;s:66:"
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}
";i:1;s:211:"";}i:173;a:2:{i:0;s:73:"
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}
";i:1;s:218:"";}i:174;a:2:{i:0;s:68:"\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}";i:1;s:213:"";}i:175;a:2:{i:0;s:68:"\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}";i:1;s:213:"";}i:176;a:2:{i:0;s:9:"f(x) \,\!";i:1;s:126:"";}i:177;a:2:{i:0;s:28:"= \sum_{n=0}^\infty a_n x^n ";i:1;s:145:"";}i:178;a:2:{i:0;s:24:"= a_0+a_1x+a_2x^2+\cdots";i:1;s:141:"";}i:179;a:2:{i:0;s:9:"f(x) \,\!";i:1;s:126:"";}i:180;a:2:{i:0;s:28:"= \sum_{n=0}^\infty a_n x^n ";i:1;s:145:"";}i:181;a:2:{i:0;s:25:"= a_0 +a_1x+a_2x^2+\cdots";i:1;s:142:"";}i:182;a:2:{i:0;s:70:"\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}";i:1;s:187:"";}i:183;a:2:{i:0;s:89:"
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
";i:1;s:278:"";}i:184;a:2:{i:0;s:15:"( \frac{1}{2} )";i:1;s:132:"";}i:185;a:2:{i:0;s:28:"\left ( \frac{1}{2} \right )";i:1;s:145:"";}i:186;a:2:{i:0;s:28:"\left ( \frac{a}{b} \right )";i:1;s:145:"";}i:187;a:2:{i:0;s:75:"\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack";i:1;s:192:"";}i:188;a:2:{i:0;s:77:"\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace";i:1;s:194:"";}i:189;a:2:{i:0;s:40:"\left \langle \frac{a}{b} \right \rangle";i:1;s:157:"";}i:190;a:2:{i:0;s:72:"\left | \frac{a}{b} \right \vert \quad \left \Vert \frac{c}{d} \right \|";i:1;s:189:"";}i:191;a:2:{i:0;s:85:"\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil";i:1;s:202:"";}i:192;a:2:{i:0;s:37:"\left / \frac{a}{b} \right \backslash";i:1;s:154:"";}i:193;a:2:{i:0;s:152:"\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow";i:1;s:269:"";}i:194;a:2:{i:0;s:20:"\left [ 0,1 \right )";i:1;s:137:"";}i:195;a:2:{i:0;s:27:"\left \langle \psi \right |";i:1;s:144:"";}i:196;a:2:{i:0;s:35:"\left . \frac{A}{B} \right \} \to X";i:1;s:152:"";}i:197;a:2:{i:0;s:57:"\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]";i:1;s:174:"";}i:198;a:2:{i:0;s:85:"\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle";i:1;s:202:"";}i:199;a:2:{i:0;s:61:"\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|";i:1;s:178:"";}i:200;a:2:{i:0;s:101:"\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil";i:1;s:218:"";}i:201;a:2:{i:0;s:121:"\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow";i:1;s:238:"";}i:202;a:2:{i:0;s:145:"\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow";i:1;s:262:"";}i:203;a:2:{i:0;s:97:"\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash";i:1;s:214:"";}i:204;a:2:{i:0;s:22:"x^2 + y^2 + z^2 = 1 \,";i:1;s:139:"";}i:205;a:2:{i:0;s:56:"\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \!";i:1;s:173:"";}i:206;a:2:{i:0;s:44:"\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho \!";i:1;s:161:"";}i:207;a:2:{i:0;s:45:"\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \!";i:1;s:162:"";}i:208;a:2:{i:0;s:56:"\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \!";i:1;s:173:"";}i:209;a:2:{i:0;s:44:"\iota \kappa \lambda \mu \nu \xi \pi \rho \!";i:1;s:161:"";}i:210;a:2:{i:0;s:45:"\sigma \tau \upsilon \phi \chi \psi \omega \!";i:1;s:162:"";}i:211;a:2:{i:0;s:40:"\varepsilon \digamma \varkappa \varpi \!";i:1;s:157:"";}i:212;a:2:{i:0;s:38:"\varrho \varsigma \vartheta \varphi \!";i:1;s:155:"";}i:213;a:2:{i:0;s:30:"\aleph \beth \gimel \daleth \!";i:1;s:147:"";}i:214;a:2:{i:0;s:21:"\mathbb{ABCDEFGHI} \!";i:1;s:138:"";}i:215;a:2:{i:0;s:21:"\mathbb{JKLMNOPQR} \!";i:1;s:138:"";}i:216;a:2:{i:0;s:20:"\mathbb{STUVWXYZ} \!";i:1;s:137:"";}i:217;a:2:{i:0;s:21:"\mathbf{ABCDEFGHI} \!";i:1;s:138:"";}i:218;a:2:{i:0;s:21:"\mathbf{JKLMNOPQR} \!";i:1;s:138:"";}i:219;a:2:{i:0;s:20:"\mathbf{STUVWXYZ} \!";i:1;s:137:"";}i:220;a:2:{i:0;s:25:"\mathbf{abcdefghijklm} \!";i:1;s:142:"";}i:221;a:2:{i:0;s:25:"\mathbf{nopqrstuvwxyz} \!";i:1;s:142:"";}i:222;a:2:{i:0;s:22:"\mathbf{0123456789} \!";i:1;s:139:"";}i:223;a:2:{i:0;s:62:"\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";i:1;s:179:"";}i:224;a:2:{i:0;s:50:"\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";i:1;s:167:"";}i:225;a:2:{i:0;s:52:"\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";i:1;s:169:"";}i:226;a:2:{i:0;s:62:"\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} \!";i:1;s:179:"";}i:227;a:2:{i:0;s:50:"\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} \!";i:1;s:167:"";}i:228;a:2:{i:0;s:52:"\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} \!";i:1;s:169:"";}i:229;a:2:{i:0;s:50:"\boldsymbol{\varepsilon\digamma\varkappa\varpi} \!";i:1;s:167:"";}i:230;a:2:{i:0;s:48:"\boldsymbol{\varrho\varsigma\vartheta\varphi} \!";i:1;s:165:"";}i:231;a:2:{i:0;s:22:"\mathit{0123456789} \!";i:1;s:139:"";}i:232;a:2:{i:0;s:58:"\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";i:1;s:175:"";}i:233;a:2:{i:0;s:46:"\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";i:1;s:163:"";}i:234;a:2:{i:0;s:48:"\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";i:1;s:165:"";}i:235;a:2:{i:0;s:21:"\mathrm{ABCDEFGHI} \!";i:1;s:138:"";}i:236;a:2:{i:0;s:21:"\mathrm{JKLMNOPQR} \!";i:1;s:138:"";}i:237;a:2:{i:0;s:20:"\mathrm{STUVWXYZ} \!";i:1;s:137:"";}i:238;a:2:{i:0;s:25:"\mathrm{abcdefghijklm} \!";i:1;s:142:"";}i:239;a:2:{i:0;s:25:"\mathrm{nopqrstuvwxyz} \!";i:1;s:142:"";}i:240;a:2:{i:0;s:22:"\mathrm{0123456789} \!";i:1;s:139:"";}i:241;a:2:{i:0;s:21:"\mathsf{ABCDEFGHI} \!";i:1;s:138:"";}i:242;a:2:{i:0;s:21:"\mathsf{JKLMNOPQR} \!";i:1;s:138:"";}i:243;a:2:{i:0;s:20:"\mathsf{STUVWXYZ} \!";i:1;s:137:"";}i:244;a:2:{i:0;s:25:"\mathsf{abcdefghijklm} \!";i:1;s:142:"";}i:245;a:2:{i:0;s:25:"\mathsf{nopqrstuvwxyz} \!";i:1;s:142:"";}i:246;a:2:{i:0;s:22:"\mathsf{0123456789} \!";i:1;s:139:"";}i:247;a:2:{i:0;s:65:"\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \!";i:1;s:182:"";}i:248;a:2:{i:0;s:53:"\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} \!";i:1;s:170:"";}i:249;a:2:{i:0;s:53:"\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\!";i:1;s:170:"";}i:250;a:2:{i:0;s:22:"\mathcal{ABCDEFGHI} \!";i:1;s:139:"";}i:251;a:2:{i:0;s:22:"\mathcal{JKLMNOPQR} \!";i:1;s:139:"";}i:252;a:2:{i:0;s:21:"\mathcal{STUVWXYZ} \!";i:1;s:138:"";}i:253;a:2:{i:0;s:23:"\mathfrak{ABCDEFGHI} \!";i:1;s:140:"";}i:254;a:2:{i:0;s:23:"\mathfrak{JKLMNOPQR} \!";i:1;s:140:"";}i:255;a:2:{i:0;s:22:"\mathfrak{STUVWXYZ} \!";i:1;s:139:"";}i:256;a:2:{i:0;s:27:"\mathfrak{abcdefghijklm} \!";i:1;s:144:"";}i:257;a:2:{i:0;s:27:"\mathfrak{nopqrstuvwxyz} \!";i:1;s:144:"";}i:258;a:2:{i:0;s:24:"\mathfrak{0123456789} \!";i:1;s:141:"";}i:259;a:2:{i:0;s:5:"x y z";i:1;s:122:"";}i:260;a:2:{i:0;s:12:"\text{x y z}";i:1;s:129:"";}i:261;a:2:{i:0;s:26:"\text{if} n \text{is even}";i:1;s:143:"";}i:262;a:2:{i:0;s:26:"\text{if }n\text{ is even}";i:1;s:143:"";}i:263;a:2:{i:0;s:27:"\text{if}~n\ \text{is even}";i:1;s:144:"";}i:264;a:2:{i:0;s:64:"{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}";i:1;s:181:"";}i:265;a:2:{i:0;s:49:"x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}";i:1;s:166:"";}i:266;a:2:{i:0;s:17:"e^{i \pi} + 1 = 0";i:1;s:134:"";}i:267;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"";}i:268;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"";}i:269;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"";}i:270;a:2:{i:0;s:17:"e^{i \pi} + 1 = 0";i:1;s:134:"";}i:271;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"";}i:272;a:2:{i:0;s:29:"\color{Apricot}\text{Apricot}";i:1;s:146:"";}i:273;a:2:{i:0;s:35:"\color{Aquamarine}\text{Aquamarine}";i:1;s:152:"";}i:274;a:2:{i:0;s:37:"\color{Bittersweet}\text{Bittersweet}";i:1;s:154:"";}i:275;a:2:{i:0;s:25:"\color{Black}\text{Black}";i:1;s:142:"";}i:276;a:2:{i:0;s:23:"\color{Blue}\text{Blue}";i:1;s:140:"";}i:277;a:2:{i:0;s:33:"\color{BlueGreen}\text{BlueGreen}";i:1;s:150:"";}i:278;a:2:{i:0;s:35:"\color{BlueViolet}\text{BlueViolet}";i:1;s:152:"";}i:279;a:2:{i:0;s:31:"\color{BrickRed}\text{BrickRed}";i:1;s:148:"";}i:280;a:2:{i:0;s:25:"\color{Brown}\text{Brown}";i:1;s:142:"";}i:281;a:2:{i:0;s:37:"\color{BurntOrange}\text{BurntOrange}";i:1;s:154:"";}i:282;a:2:{i:0;s:33:"\color{CadetBlue}\text{CadetBlue}";i:1;s:150:"";}i:283;a:2:{i:0;s:41:"\color{CarnationPink}\text{CarnationPink}";i:1;s:158:"";}i:284;a:2:{i:0;s:31:"\color{Cerulean}\text{Cerulean}";i:1;s:148:"";}i:285;a:2:{i:0;s:43:"\color{CornflowerBlue}\text{CornflowerBlue}";i:1;s:160:"";}i:286;a:2:{i:0;s:23:"\color{Cyan}\text{Cyan}";i:1;s:140:"";}i:287;a:2:{i:0;s:33:"\color{Dandelion}\text{Dandelion}";i:1;s:150:"";}i:288;a:2:{i:0;s:35:"\color{DarkOrchid}\text{DarkOrchid}";i:1;s:152:"";}i:289;a:2:{i:0;s:29:"\color{Emerald}\text{Emerald}";i:1;s:146:"";}i:290;a:2:{i:0;s:37:"\color{ForestGreen}\text{ForestGreen}";i:1;s:154:"";}i:291;a:2:{i:0;s:29:"\color{Fuchsia}\text{Fuchsia}";i:1;s:146:"";}i:292;a:2:{i:0;s:33:"\color{Goldenrod}\text{Goldenrod}";i:1;s:150:"";}i:293;a:2:{i:0;s:23:"\color{Gray}\text{Gray}";i:1;s:140:"";}i:294;a:2:{i:0;s:25:"\color{Green}\text{Green}";i:1;s:142:"";}i:295;a:2:{i:0;s:37:"\color{GreenYellow}\text{GreenYellow}";i:1;s:154:"";}i:296;a:2:{i:0;s:37:"\color{JungleGreen}\text{JungleGreen}";i:1;s:154:"";}i:297;a:2:{i:0;s:31:"\color{Lavender}\text{Lavender}";i:1;s:148:"";}i:298;a:2:{i:0;s:33:"\color{LimeGreen}\text{LimeGreen}";i:1;s:150:"";}i:299;a:2:{i:0;s:29:"\color{Magenta}\text{Magenta}";i:1;s:146:"";}i:300;a:2:{i:0;s:31:"\color{Mahogany}\text{Mahogany}";i:1;s:148:"";}i:301;a:2:{i:0;s:27:"\color{Maroon}\text{Maroon}";i:1;s:144:"";}i:302;a:2:{i:0;s:25:"\color{Melon}\text{Melon}";i:1;s:142:"";}i:303;a:2:{i:0;s:39:"\color{MidnightBlue}\text{MidnightBlue}";i:1;s:156:"";}i:304;a:2:{i:0;s:31:"\color{Mulberry}\text{Mulberry}";i:1;s:148:"";}i:305;a:2:{i:0;s:31:"\color{NavyBlue}\text{NavyBlue}";i:1;s:148:"";}i:306;a:2:{i:0;s:35:"\color{OliveGreen}\text{OliveGreen}";i:1;s:152:"";}i:307;a:2:{i:0;s:27:"\color{Orange}\text{Orange}";i:1;s:144:"";}i:308;a:2:{i:0;s:33:"\color{OrangeRed}\text{OrangeRed}";i:1;s:150:"";}i:309;a:2:{i:0;s:27:"\color{Orchid}\text{Orchid}";i:1;s:144:"";}i:310;a:2:{i:0;s:25:"\color{Peach}\text{Peach}";i:1;s:142:"";}i:311;a:2:{i:0;s:35:"\color{Periwinkle}\text{Periwinkle}";i:1;s:152:"";}i:312;a:2:{i:0;s:33:"\color{PineGreen}\text{PineGreen}";i:1;s:150:"";}i:313;a:2:{i:0;s:23:"\color{Plum}\text{Plum}";i:1;s:140:"";}i:314;a:2:{i:0;s:37:"\color{ProcessBlue}\text{ProcessBlue}";i:1;s:154:"";}i:315;a:2:{i:0;s:27:"\color{Purple}\text{Purple}";i:1;s:144:"";}i:316;a:2:{i:0;s:33:"\color{RawSienna}\text{RawSienna}";i:1;s:150:"";}i:317;a:2:{i:0;s:21:"\color{Red}\text{Red}";i:1;s:138:"";}i:318;a:2:{i:0;s:33:"\color{RedOrange}\text{RedOrange}";i:1;s:150:"";}i:319;a:2:{i:0;s:33:"\color{RedViolet}\text{RedViolet}";i:1;s:150:"";}i:320;a:2:{i:0;s:33:"\color{Rhodamine}\text{Rhodamine}";i:1;s:150:"";}i:321;a:2:{i:0;s:33:"\color{RoyalBlue}\text{RoyalBlue}";i:1;s:150:"";}i:322;a:2:{i:0;s:37:"\color{RoyalPurple}\text{RoyalPurple}";i:1;s:154:"";}i:323;a:2:{i:0;s:33:"\color{RubineRed}\text{RubineRed}";i:1;s:150:"";}i:324;a:2:{i:0;s:27:"\color{Salmon}\text{Salmon}";i:1;s:144:"";}i:325;a:2:{i:0;s:31:"\color{SeaGreen}\text{SeaGreen}";i:1;s:148:"";}i:326;a:2:{i:0;s:25:"\color{Sepia}\text{Sepia}";i:1;s:142:"";}i:327;a:2:{i:0;s:29:"\color{SkyBlue}\text{SkyBlue}";i:1;s:146:"";}i:328;a:2:{i:0;s:37:"\color{SpringGreen}\text{SpringGreen}";i:1;s:154:"";}i:329;a:2:{i:0;s:21:"\color{Tan}\text{Tan}";i:1;s:138:"";}i:330;a:2:{i:0;s:31:"\color{TealBlue}\text{TealBlue}";i:1;s:148:"";}i:331;a:2:{i:0;s:29:"\color{Thistle}\text{Thistle}";i:1;s:146:"";}i:332;a:2:{i:0;s:33:"\color{Turquoise}\text{Turquoise}";i:1;s:150:"";}i:333;a:2:{i:0;s:27:"\color{Violet}\text{Violet}";i:1;s:144:"";}i:334;a:2:{i:0;s:33:"\color{VioletRed}\text{VioletRed}";i:1;s:150:"";}i:335;a:2:{i:0;s:43:"\color{WildStrawberry}\text{WildStrawberry}";i:1;s:160:"";}i:336;a:2:{i:0;s:37:"\color{YellowGreen}\text{YellowGreen}";i:1;s:154:"";}i:337;a:2:{i:0;s:39:"\color{YellowOrange}\text{YellowOrange}";i:1;s:156:"";}i:338;a:2:{i:0;s:10:"a \qquad b";i:1;s:127:"";}i:339;a:2:{i:0;s:9:"a \quad b";i:1;s:126:"";}i:340;a:2:{i:0;s:4:"a\ b";i:1;s:121:"";}i:341;a:2:{i:0;s:12:"a \mbox{ } b";i:1;s:129:"";}i:342;a:2:{i:0;s:4:"a\;b";i:1;s:121:"";}i:343;a:2:{i:0;s:4:"a\,b";i:1;s:121:"";}i:344;a:2:{i:0;s:2:"ab";i:1;s:119:"";}i:345;a:2:{i:0;s:11:"\mathit{ab}";i:1;s:128:"";}i:346;a:2:{i:0;s:4:"a\!b";i:1;s:121:"";}i:347;a:2:{i:0;s:59:"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots";i:1;s:176:"";}i:348;a:2:{i:0;s:61:"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}";i:1;s:178:"";}i:349;a:2:{i:0;s:22:"\int_{-N}^{N} e^x\, dx";i:1;s:139:"";}i:350;a:2:{i:0;s:24:"\sum_{i=0}^\infty 2^{-i}";i:1;s:141:"";}i:351;a:2:{i:0;s:57:"\text{geometric series:}\quad \sum_{i=0}^\infty 2^{-i}=2 ";i:1;s:174:"";}i:352;a:2:{i:0;s:5:"\iint";i:1;s:122:"";}i:353;a:2:{i:0;s:5:"\oint";i:1;s:122:"";}i:354;a:2:{i:0;s:90:"\iint\limits_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset \mathbf D \cdot \mathrm{d}\mathbf A";i:1;s:207:"";}i:355;a:2:{i:0;s:114:"\int\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\cdot\mathrm{d}\mathbf A";i:1;s:231:"";}i:356;a:2:{i:0;s:139:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf D\cdot\mathrm{d}\mathbf A";i:1;s:256:"";}i:357;a:2:{i:0;s:132:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\;\cdot\mathrm{d}\mathbf A";i:1;s:249:"";}i:358;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"";}i:359;a:2:{i:0;s:110:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";i:1;s:227:"";}i:360;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"";}i:361;a:2:{i:0;s:110:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";i:1;s:227:"";}i:362;a:2:{i:0;s:57:"\oint_C \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";i:1;s:174:"";}i:363;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"";}i:364;a:2:{i:0;s:96:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";i:1;s:213:"";}i:365;a:2:{i:0;s:68:"\oint_{\partial S} \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";i:1;s:185:"";}i:366;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"";}i:367;a:2:{i:0;s:96:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";i:1;s:213:"";}i:368;a:2:{i:0;s:11:"\bold{P} = ";i:1;s:128:"";}i:369;a:2:{i:0;s:30:"{\scriptstyle \partial \Omega}";i:1;s:147:"";}i:370;a:2:{i:0;s:47:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";i:1;s:164:"";}i:371;a:2:{i:0;s:11:"\bold{P} = ";i:1;s:128:"";}i:372;a:2:{i:0;s:30:"{\scriptstyle \partial \Omega}";i:1;s:147:"";}i:373;a:2:{i:0;s:47:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";i:1;s:164:"";}i:374;a:2:{i:0;s:20:"\overset{\frown}{AB}";i:1;s:137:"";}i:375;a:2:{i:0;s:17:"ax^2 + bx + c = 0";i:1;s:134:"";}i:376;a:2:{i:0;s:17:"ax^2 + bx + c = 0";i:1;s:134:"";}i:377;a:2:{i:0;s:32:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";i:1;s:149:"";}i:378;a:2:{i:0;s:32:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";i:1;s:149:"";}i:379;a:2:{i:0;s:56:"2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)";i:1;s:173:"";}i:380;a:2:{i:0;s:56:"2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)";i:1;s:181:"";}i:381;a:2:{i:0;s:67:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";i:1;s:184:"";}i:382;a:2:{i:0;s:67:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";i:1;s:184:"";}i:383;a:2:{i:0;s:61:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy";i:1;s:178:"";}i:384;a:2:{i:0;s:61:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy";i:1;s:182:"";}i:385;a:2:{i:0;s:38:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";i:1;s:155:"";}i:386;a:2:{i:0;s:38:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";i:1;s:155:"";}i:387;a:2:{i:0;s:18:"\sum_{i=0}^{n-1} i";i:1;s:135:"";}i:388;a:2:{i:0;s:18:"\sum_{i=0}^{n-1} i";i:1;s:135:"";}i:389;a:2:{i:0;s:78:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}";i:1;s:195:"";}i:390;a:2:{i:0;s:79:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}";i:1;s:200:"";}i:391;a:2:{i:0;s:35:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";i:1;s:170:"";}i:392;a:2:{i:0;s:35:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";i:1;s:170:"";}i:393;a:2:{i:0;s:61:"|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)";i:1;s:178:"";}i:394;a:2:{i:0;s:61:"|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)";i:1;s:186:"";}i:395;a:2:{i:0;s:35:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";i:1;s:152:"";}i:396;a:2:{i:0;s:35:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";i:1;s:152:"";}i:397;a:2:{i:0;s:170:"\phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";i:1;s:291:"";}i:398;a:2:{i:0;s:170:"\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";i:1;s:303:"";}i:399;a:2:{i:0;s:86:"\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";i:1;s:203:"";}i:400;a:2:{i:0;s:86:"\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";i:1;s:211:"";}i:401;a:2:{i:0;s:100:"f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise}\end{cases}";i:1;s:236:"";}i:402;a:2:{i:0;s:104:"
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases}
";i:1;s:264:"";}i:403;a:2:{i:0;s:122:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}";i:1;s:239:"";}i:404;a:2:{i:0;s:123:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!}";i:1;s:252:"";}i:405;a:2:{i:0;s:25:"\frac{a}{b}\ \tfrac{a}{b}";i:1;s:142:"";}i:406;a:2:{i:0;s:25:"\frac{a}{b}\ \tfrac{a}{b}";i:1;s:142:"";}i:407;a:2:{i:0;s:18:"S=dD\,\sin\alpha\!";i:1;s:135:"";}i:408;a:2:{i:0;s:18:"S=dD\,\sin\alpha\!";i:1;s:135:"";}i:409;a:2:{i:0;s:56:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";i:1;s:173:"";}i:410;a:2:{i:0;s:56:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";i:1;s:173:"";}i:411;a:2:{i:0;s:167:"\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v)\\
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align}";i:1;s:320:"";}i:412;a:2:{i:0;s:168:"\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align}";i:1;s:321:"";}i:413;a:2:{i:0;s:172:" with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|