[
{
"input": "e^{i \\pi} + 1 = 0\\,\\!",
"params": [],
"output": ""
},
{
"input": "e^{i \\pi} + 1 = 0\\,\\!",
"params": [],
"output": ""
},
{
"input": "\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!",
"params": [],
"output": ""
},
{
"input": "\\sqrt{\\pi}",
"params": {
"alt": "Square root of pi"
},
"output": ""
},
{
"input": "\\sqrt{\\pi}",
"params": {
"alt": "square root of pi"
},
"output": ""
},
{
"input": "\\pi",
"params": {
"title": "pi"
},
"output": ""
},
{
"input": "\\pi",
"params": {
"title": "pi"
},
"output": ""
},
{
"input": "\\text{abc}",
"params": [],
"output": ""
},
{
"input": "\\alpha\\,\\!",
"params": [],
"output": ""
},
{
"input": " f(x) = x^2\\,\\!",
"params": [],
"output": ""
},
{
"input": "\\sqrt{2}",
"params": [],
"output": ""
},
{
"input": "\\sqrt{1-e^2}\\!",
"params": [],
"output": ""
},
{
"input": "\\sqrt{1-z^3}\\!",
"params": [],
"output": ""
},
{
"input": "x",
"params": [],
"output": ""
},
{
"input": "\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!",
"params": [],
"output": ""
},
{
"input": "\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!",
"params": [],
"output": ""
},
{
"input": "\\hat{a}, \\widehat{a}, \\vec{a} \\!",
"params": [],
"output": ""
},
{
"input": "\\exp_a b = a^b, \\exp b = e^b, 10^m \\!",
"params": [],
"output": ""
},
{
"input": "\\ln c, \\lg d = \\log e, \\log_{10} f \\!",
"params": [],
"output": ""
},
{
"input": "\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!",
"params": [],
"output": ""
},
{
"input": "\\arcsin h, \\arccos i, \\arctan j \\!",
"params": [],
"output": ""
},
{
"input": "\\sinh k, \\cosh l, \\tanh m, \\coth n \\!",
"params": [],
"output": ""
},
{
"input": "\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!",
"params": [],
"output": ""
},
{
"input": "\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!",
"params": [],
"output": ""
},
{
"input": "\\sgn r, \\left\\vert s \\right\\vert \\!",
"params": [],
"output": ""
},
{
"input": "\\min(x,y), \\max(x,y) \\!",
"params": [],
"output": ""
},
{
"input": "\\min x, \\max y, \\inf s, \\sup t \\!",
"params": [],
"output": ""
},
{
"input": "\\lim u, \\liminf v, \\limsup w \\!",
"params": [],
"output": ""
},
{
"input": "\\dim p, \\deg q, \\det m, \\ker\\phi \\!",
"params": [],
"output": ""
},
{
"input": "\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!",
"params": [],
"output": ""
},
{
"input": "dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!",
"params": [],
"output": ""
},
{
"input": "dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!",
"params": [],
"output": ""
},
{
"input": "\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y",
"params": [],
"output": ""
},
{
"input": "\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!",
"params": [],
"output": ""
},
{
"input": "\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!",
"params": [],
"output": ""
},
{
"input": "s_k \\equiv 0 \\pmod{m} \\!",
"params": [],
"output": ""
},
{
"input": "a\\,\\bmod\\,b \\!",
"params": [],
"output": ""
},
{
"input": "\\gcd(m, n), \\operatorname{lcm}(m, n)",
"params": [],
"output": ""
},
{
"input": "\\mid, \\nmid, \\shortmid, \\nshortmid \\!",
"params": [],
"output": ""
},
{
"input": "\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!",
"params": [],
"output": ""
},
{
"input": "+, -, \\pm, \\mp, \\dotplus \\!",
"params": [],
"output": ""
},
{
"input": "\\times, \\div, \\divideontimes, \/, \\backslash \\!",
"params": [],
"output": ""
},
{
"input": "\\cdot, * \\ast, \\star, \\circ, \\bullet \\!",
"params": [],
"output": ""
},
{
"input": "\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!",
"params": [],
"output": ""
},
{
"input": "\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!",
"params": [],
"output": ""
},
{
"input": "\\circleddash, \\circledcirc, \\circledast \\!",
"params": [],
"output": ""
},
{
"input": "\\bigoplus, \\bigotimes, \\bigodot \\!",
"params": [],
"output": ""
},
{
"input": "\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!",
"params": [],
"output": ""
},
{
"input": "\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!",
"params": [],
"output": ""
},
{
"input": "\\cap, \\Cap, \\sqcap, \\bigcap \\!",
"params": [],
"output": ""
},
{
"input": "\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!",
"params": [],
"output": ""
},
{
"input": "\\setminus, \\smallsetminus, \\times \\!",
"params": [],
"output": ""
},
{
"input": "\\subset, \\Subset, \\sqsubset \\!",
"params": [],
"output": ""
},
{
"input": "\\supset, \\Supset, \\sqsupset \\!",
"params": [],
"output": ""
},
{
"input": "\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!",
"params": [],
"output": ""
},
{
"input": "\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!",
"params": [],
"output": ""
},
{
"input": "\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!",
"params": [],
"output": ""
},
{
"input": "\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!",
"params": [],
"output": ""
},
{
"input": "=, \\ne, \\neq, \\equiv, \\not\\equiv \\!",
"params": [],
"output": ""
},
{
"input": "\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!",
"params": [],
"output": ""
},
{
"input": "\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!",
"params": [],
"output": ""
},
{
"input": "\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!",
"params": [],
"output": ""
},
{
"input": "<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!",
"params": [],
"output": ""
},
{
"input": ">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!",
"params": [],
"output": ""
},
{
"input": "\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!",
"params": [],
"output": ""
},
{
"input": "\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!",
"params": [],
"output": ""
},
{
"input": "\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!",
"params": [],
"output": ""
},
{
"input": "\\leqslant, \\nleqslant, \\eqslantless \\!",
"params": [],
"output": ""
},
{
"input": "\\geqslant, \\ngeqslant, \\eqslantgtr \\!",
"params": [],
"output": ""
},
{
"input": "\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!",
"params": [],
"output": ""
},
{
"input": " \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,",
"params": [],
"output": ""
},
{
"input": "\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!",
"params": [],
"output": ""
},
{
"input": "\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!",
"params": [],
"output": ""
},
{
"input": "\\preccurlyeq, \\curlyeqprec \\,",
"params": [],
"output": ""
},
{
"input": "\\succcurlyeq, \\curlyeqsucc \\,",
"params": [],
"output": ""
},
{
"input": "\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,",
"params": [],
"output": ""
},
{
"input": "\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,",
"params": [],
"output": ""
},
{
"input": "\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!",
"params": [],
"output": ""
},
{
"input": "\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!",
"params": [],
"output": ""
},
{
"input": "\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!",
"params": [],
"output": ""
},
{
"input": "\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!",
"params": [],
"output": ""
},
{
"input": "\\vartriangle, \\triangledown\\!",
"params": [],
"output": ""
},
{
"input": "\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!",
"params": [],
"output": ""
},
{
"input": "\\forall, \\exists, \\nexists \\!",
"params": [],
"output": ""
},
{
"input": "\\therefore, \\because, \\And \\!",
"params": [],
"output": ""
},
{
"input": "\\or \\lor \\vee, \\curlyvee, \\bigvee \\!",
"params": [],
"output": ""
},
{
"input": "\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!",
"params": [],
"output": ""
},
{
"input": "\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!",
"params": [],
"output": ""
},
{
"input": "\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!",
"params": [],
"output": ""
},
{
"input": "\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!",
"params": [],
"output": ""
},
{
"input": "\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!",
"params": [],
"output": ""
},
{
"input": "\\ulcorner \\urcorner \\llcorner \\lrcorner \\,",
"params": [],
"output": ""
},
{
"input": "\\Rrightarrow, \\Lleftarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!",
"params": [],
"output": ""
},
{
"input": "\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!",
"params": [],
"output": ""
},
{
"input": "\\Uparrow, \\Downarrow, \\Updownarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!",
"params": [],
"output": ""
},
{
"input": "\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!",
"params": [],
"output": ""
},
{
"input": "\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\uparrow, \\downarrow, \\updownarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!",
"params": [],
"output": ""
},
{
"input": "\\mapsto, \\longmapsto \\!",
"params": [],
"output": ""
},
{
"input": "\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!",
"params": [],
"output": ""
},
{
"input": "\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!",
"params": [],
"output": ""
},
{
"input": "\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!",
"params": [],
"output": ""
},
{
"input": "\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!",
"params": [],
"output": ""
},
{
"input": "\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!",
"params": [],
"output": ""
},
{
"input": "\\smile \\frown \\wr \\triangleleft \\triangleright\\!",
"params": [],
"output": ""
},
{
"input": "\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!",
"params": [],
"output": ""
},
{
"input": "\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!",
"params": [],
"output": ""
},
{
"input": "\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!",
"params": [],
"output": ""
},
{
"input": "\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!",
"params": [],
"output": ""
},
{
"input": "\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!",
"params": [],
"output": ""
},
{
"input": "\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!",
"params": [],
"output": ""
},
{
"input": "a^2",
"params": [],
"output": ""
},
{
"input": "a_2",
"params": [],
"output": ""
},
{
"input": "10^{30} a^{2+2}",
"params": [],
"output": ""
},
{
"input": "a_{i,j} b_{f'}",
"params": [],
"output": ""
},
{
"input": "x_2^3",
"params": [],
"output": ""
},
{
"input": "{x_2}^3 \\,\\!",
"params": [],
"output": ""
},
{
"input": "10^{10^{8}}",
"params": [],
"output": ""
},
{
"input": "\\sideset{_1^2}{_3^4}\\prod_a^b",
"params": [],
"output": ""
},
{
"input": "{}_1^2\\!\\Omega_3^4",
"params": [],
"output": ""
},
{
"input": "\\overset{\\alpha}{\\omega}",
"params": [],
"output": ""
},
{
"input": "\\underset{\\alpha}{\\omega}",
"params": [],
"output": ""
},
{
"input": "\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}",
"params": [],
"output": ""
},
{
"input": "\\stackrel{\\alpha}{\\omega}",
"params": [],
"output": ""
},
{
"input": "x', y'', f', f''",
"params": [],
"output": ""
},
{
"input": "x^\\prime, y^{\\prime\\prime}",
"params": [],
"output": ""
},
{
"input": "\\dot{x}, \\ddot{x}",
"params": [],
"output": ""
},
{
"input": " \\hat a \\ \\bar b \\ \\vec c",
"params": [],
"output": ""
},
{
"input": " \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}",
"params": [],
"output": ""
},
{
"input": " \\overline{g h i} \\ \\underline{j k l}",
"params": [],
"output": ""
},
{
"input": "\\overset{\\frown} {AB}",
"params": [],
"output": ""
},
{
"input": " A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C",
"params": [],
"output": ""
},
{
"input": "\\overbrace{ 1+2+\\cdots+100 }^{5050}",
"params": [],
"output": ""
},
{
"input": "\\underbrace{ a+b+\\cdots+z }_{26}",
"params": [],
"output": ""
},
{
"input": "\\sum_{k=1}^N k^2",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\sum_{k=1}^N k^2",
"params": [],
"output": ""
},
{
"input": "\\frac{\\sum_{k=1}^N k^2}{a}",
"params": [],
"output": ""
},
{
"input": "\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}",
"params": [],
"output": ""
},
{
"input": "\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}",
"params": [],
"output": ""
},
{
"input": "\\prod_{i=1}^N x_i",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\prod_{i=1}^N x_i",
"params": [],
"output": ""
},
{
"input": "\\coprod_{i=1}^N x_i",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\coprod_{i=1}^N x_i",
"params": [],
"output": ""
},
{
"input": "\\lim_{n \\to \\infty}x_n",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\lim_{n \\to \\infty}x_n",
"params": [],
"output": ""
},
{
"input": "\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
"params": [],
"output": ""
},
{
"input": "\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx",
"params": [],
"output": ""
},
{
"input": "\\textstyle \\int_{-N}^{N} e^x\\, dx",
"params": [],
"output": ""
},
{
"input": "\\iint\\limits_D \\, dx\\,dy",
"params": [],
"output": ""
},
{
"input": "\\iiint\\limits_E \\, dx\\,dy\\,dz",
"params": [],
"output": ""
},
{
"input": "\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt",
"params": [],
"output": ""
},
{
"input": "\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
"params": [],
"output": ""
},
{
"input": "\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
"params": [],
"output": ""
},
{
"input": "\\bigcap_{i=_1}^n E_i",
"params": [],
"output": ""
},
{
"input": "\\bigcup_{i=_1}^n E_i",
"params": [],
"output": ""
},
{
"input": "\\frac{2}{4}=0.5",
"params": [],
"output": ""
},
{
"input": "\\tfrac{2}{4} = 0.5",
"params": [],
"output": ""
},
{
"input": "\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a",
"params": [],
"output": ""
},
{
"input": "\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a",
"params": [],
"output": ""
},
{
"input": "\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}",
"params": [],
"output": ""
},
{
"input": "\\binom{n}{k}",
"params": [],
"output": ""
},
{
"input": "\\tbinom{n}{k}",
"params": [],
"output": ""
},
{
"input": "\\dbinom{n}{k}",
"params": [],
"output": ""
},
{
"input": "\\begin{matrix} x & y \\\\ z & v\n\\end{matrix}",
"params": [],
"output": ""
},
{
"input": "\\begin{vmatrix} x & y \\\\ z & v\n\\end{vmatrix}",
"params": [],
"output": ""
},
{
"input": "\\begin{Vmatrix} x & y \\\\ z & v\n\\end{Vmatrix}",
"params": [],
"output": ""
},
{
"input": "\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots\n& \\ddots & \\vdots \\\\ 0 & \\cdots &\n0\\end{bmatrix} ",
"params": [],
"output": ""
},
{
"input": "\\begin{Bmatrix} x & y \\\\ z & v\n\\end{Bmatrix}",
"params": [],
"output": ""
},
{
"input": "\\begin{pmatrix} x & y \\\\ z & v\n\\end{pmatrix}",
"params": [],
"output": ""
},
{
"input": "\n\\bigl( \\begin{smallmatrix}\na&b\\\\ c&d\n\\end{smallmatrix} \\bigr)\n",
"params": [],
"output": ""
},
{
"input": "f(n) =\n\\begin{cases}\nn\/2, & \\text{if }n\\text{ is even} \\\\\n3n+1, & \\text{if }n\\text{ is odd}\n\\end{cases} ",
"params": [],
"output": ""
},
{
"input": "\n\\begin{align}\nf(x) & = (a+b)^2 \\\\\n& = a^2+2ab+b^2 \\\\\n\\end{align}\n",
"params": [],
"output": ""
},
{
"input": "\n\\begin{alignat}{2}\nf(x) & = (a-b)^2 \\\\\n& = a^2-2ab+b^2 \\\\\n\\end{alignat}\n",
"params": [],
"output": ""
},
{
"input": "\\begin{array}{lcl}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
"params": [],
"output": ""
},
{
"input": "\\begin{array}{lcr}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
"params": [],
"output": ""
},
{
"input": "f(x) \\,\\!",
"params": [],
"output": ""
},
{
"input": "= \\sum_{n=0}^\\infty a_n x^n ",
"params": [],
"output": ""
},
{
"input": "= a_0+a_1x+a_2x^2+\\cdots",
"params": [],
"output": ""
},
{
"input": "f(x) \\,\\!",
"params": [],
"output": ""
},
{
"input": "= \\sum_{n=0}^\\infty a_n x^n ",
"params": [],
"output": ""
},
{
"input": "= a_0 +a_1x+a_2x^2+\\cdots",
"params": [],
"output": ""
},
{
"input": "\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}",
"params": [],
"output": ""
},
{
"input": "\n\\begin{array}{|c|c||c|} a & b & S \\\\\n\\hline\n0&0&1\\\\\n0&1&1\\\\\n1&0&1\\\\\n1&1&0\\\\\n\\end{array}\n",
"params": [],
"output": ""
},
{
"input": "( \\frac{1}{2} )",
"params": [],
"output": ""
},
{
"input": "\\left ( \\frac{1}{2} \\right )",
"params": [],
"output": ""
},
{
"input": "\\left ( \\frac{a}{b} \\right )",
"params": [],
"output": ""
},
{
"input": "\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack",
"params": [],
"output": ""
},
{
"input": "\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace",
"params": [],
"output": ""
},
{
"input": "\\left \\langle \\frac{a}{b} \\right \\rangle",
"params": [],
"output": ""
},
{
"input": "\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|",
"params": [],
"output": ""
},
{
"input": "\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil",
"params": [],
"output": ""
},
{
"input": "\\left \/ \\frac{a}{b} \\right \\backslash",
"params": [],
"output": ""
},
{
"input": "\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow",
"params": [],
"output": ""
},
{
"input": "\\left [ 0,1 \\right )",
"params": [],
"output": ""
},
{
"input": "\\left \\langle \\psi \\right |",
"params": [],
"output": ""
},
{
"input": "\\left . \\frac{A}{B} \\right \\} \\to X",
"params": [],
"output": ""
},
{
"input": "\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]",
"params": [],
"output": ""
},
{
"input": "\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle",
"params": [],
"output": ""
},
{
"input": "\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|",
"params": [],
"output": ""
},
{
"input": "\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil",
"params": [],
"output": ""
},
{
"input": "\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow",
"params": [],
"output": ""
},
{
"input": "\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow",
"params": [],
"output": ""
},
{
"input": "\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash",
"params": [],
"output": ""
},
{
"input": "x^2 + y^2 + z^2 = 1 \\,",
"params": [],
"output": ""
},
{
"input": "\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!",
"params": [],
"output": ""
},
{
"input": "\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!",
"params": [],
"output": ""
},
{
"input": "\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!",
"params": [],
"output": ""
},
{
"input": "\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!",
"params": [],
"output": ""
},
{
"input": "\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!",
"params": [],
"output": ""
},
{
"input": "\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!",
"params": [],
"output": ""
},
{
"input": "\\varepsilon \\digamma \\varkappa \\varpi \\!",
"params": [],
"output": ""
},
{
"input": "\\varrho \\varsigma \\vartheta \\varphi \\!",
"params": [],
"output": ""
},
{
"input": "\\aleph \\beth \\gimel \\daleth \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbb{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbb{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbb{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{abcdefghijklm} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{nopqrstuvwxyz} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathbf{0123456789} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!",
"params": [],
"output": ""
},
{
"input": "\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathit{0123456789} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{abcdefghijklm} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{nopqrstuvwxyz} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathrm{0123456789} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{abcdefghijklm} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{nopqrstuvwxyz} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{0123456789} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!",
"params": [],
"output": ""
},
{
"input": "\\mathcal{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathcal{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathcal{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{ABCDEFGHI} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{JKLMNOPQR} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{STUVWXYZ} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{abcdefghijklm} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{nopqrstuvwxyz} \\!",
"params": [],
"output": ""
},
{
"input": "\\mathfrak{0123456789} \\!",
"params": [],
"output": ""
},
{
"input": "x y z",
"params": [],
"output": ""
},
{
"input": "\\text{x y z}",
"params": [],
"output": ""
},
{
"input": "\\text{if} n \\text{is even}",
"params": [],
"output": ""
},
{
"input": "\\text{if }n\\text{ is even}",
"params": [],
"output": ""
},
{
"input": "\\text{if}~n\\ \\text{is even}",
"params": [],
"output": ""
},
{
"input": "{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}",
"params": [],
"output": ""
},
{
"input": "x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}",
"params": [],
"output": ""
},
{
"input": "e^{i \\pi} + 1 = 0",
"params": [],
"output": ""
},
{
"input": "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
"params": [],
"output": ""
},
{
"input": "e^{i \\pi} + 1 = 0\\,\\!",
"params": [],
"output": ""
},
{
"input": "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
"params": [],
"output": ""
},
{
"input": "e^{i \\pi} + 1 = 0",
"params": [],
"output": ""
},
{
"input": "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
"params": [],
"output": ""
},
{
"input": "\\color{Apricot}\\text{Apricot}",
"params": [],
"output": ""
},
{
"input": "\\color{Aquamarine}\\text{Aquamarine}",
"params": [],
"output": ""
},
{
"input": "\\color{Bittersweet}\\text{Bittersweet}",
"params": [],
"output": ""
},
{
"input": "\\color{Black}\\text{Black}",
"params": [],
"output": ""
},
{
"input": "\\color{Blue}\\text{Blue}",
"params": [],
"output": ""
},
{
"input": "\\color{BlueGreen}\\text{BlueGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{BlueViolet}\\text{BlueViolet}",
"params": [],
"output": ""
},
{
"input": "\\color{BrickRed}\\text{BrickRed}",
"params": [],
"output": ""
},
{
"input": "\\color{Brown}\\text{Brown}",
"params": [],
"output": ""
},
{
"input": "\\color{BurntOrange}\\text{BurntOrange}",
"params": [],
"output": ""
},
{
"input": "\\color{CadetBlue}\\text{CadetBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{CarnationPink}\\text{CarnationPink}",
"params": [],
"output": ""
},
{
"input": "\\color{Cerulean}\\text{Cerulean}",
"params": [],
"output": ""
},
{
"input": "\\color{CornflowerBlue}\\text{CornflowerBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{Cyan}\\text{Cyan}",
"params": [],
"output": ""
},
{
"input": "\\color{Dandelion}\\text{Dandelion}",
"params": [],
"output": ""
},
{
"input": "\\color{DarkOrchid}\\text{DarkOrchid}",
"params": [],
"output": ""
},
{
"input": "\\color{Emerald}\\text{Emerald}",
"params": [],
"output": ""
},
{
"input": "\\color{ForestGreen}\\text{ForestGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Fuchsia}\\text{Fuchsia}",
"params": [],
"output": ""
},
{
"input": "\\color{Goldenrod}\\text{Goldenrod}",
"params": [],
"output": ""
},
{
"input": "\\color{Gray}\\text{Gray}",
"params": [],
"output": ""
},
{
"input": "\\color{Green}\\text{Green}",
"params": [],
"output": ""
},
{
"input": "\\color{GreenYellow}\\text{GreenYellow}",
"params": [],
"output": ""
},
{
"input": "\\color{JungleGreen}\\text{JungleGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Lavender}\\text{Lavender}",
"params": [],
"output": ""
},
{
"input": "\\color{LimeGreen}\\text{LimeGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Magenta}\\text{Magenta}",
"params": [],
"output": ""
},
{
"input": "\\color{Mahogany}\\text{Mahogany}",
"params": [],
"output": ""
},
{
"input": "\\color{Maroon}\\text{Maroon}",
"params": [],
"output": ""
},
{
"input": "\\color{Melon}\\text{Melon}",
"params": [],
"output": ""
},
{
"input": "\\color{MidnightBlue}\\text{MidnightBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{Mulberry}\\text{Mulberry}",
"params": [],
"output": ""
},
{
"input": "\\color{NavyBlue}\\text{NavyBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{OliveGreen}\\text{OliveGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Orange}\\text{Orange}",
"params": [],
"output": ""
},
{
"input": "\\color{OrangeRed}\\text{OrangeRed}",
"params": [],
"output": ""
},
{
"input": "\\color{Orchid}\\text{Orchid}",
"params": [],
"output": ""
},
{
"input": "\\color{Peach}\\text{Peach}",
"params": [],
"output": ""
},
{
"input": "\\color{Periwinkle}\\text{Periwinkle}",
"params": [],
"output": ""
},
{
"input": "\\color{PineGreen}\\text{PineGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Plum}\\text{Plum}",
"params": [],
"output": ""
},
{
"input": "\\color{ProcessBlue}\\text{ProcessBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{Purple}\\text{Purple}",
"params": [],
"output": ""
},
{
"input": "\\color{RawSienna}\\text{RawSienna}",
"params": [],
"output": ""
},
{
"input": "\\color{Red}\\text{Red}",
"params": [],
"output": ""
},
{
"input": "\\color{RedOrange}\\text{RedOrange}",
"params": [],
"output": ""
},
{
"input": "\\color{RedViolet}\\text{RedViolet}",
"params": [],
"output": ""
},
{
"input": "\\color{Rhodamine}\\text{Rhodamine}",
"params": [],
"output": ""
},
{
"input": "\\color{RoyalBlue}\\text{RoyalBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{RoyalPurple}\\text{RoyalPurple}",
"params": [],
"output": ""
},
{
"input": "\\color{RubineRed}\\text{RubineRed}",
"params": [],
"output": ""
},
{
"input": "\\color{Salmon}\\text{Salmon}",
"params": [],
"output": ""
},
{
"input": "\\color{SeaGreen}\\text{SeaGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Sepia}\\text{Sepia}",
"params": [],
"output": ""
},
{
"input": "\\color{SkyBlue}\\text{SkyBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{SpringGreen}\\text{SpringGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{Tan}\\text{Tan}",
"params": [],
"output": ""
},
{
"input": "\\color{TealBlue}\\text{TealBlue}",
"params": [],
"output": ""
},
{
"input": "\\color{Thistle}\\text{Thistle}",
"params": [],
"output": ""
},
{
"input": "\\color{Turquoise}\\text{Turquoise}",
"params": [],
"output": ""
},
{
"input": "\\color{Violet}\\text{Violet}",
"params": [],
"output": ""
},
{
"input": "\\color{VioletRed}\\text{VioletRed}",
"params": [],
"output": ""
},
{
"input": "\\pagecolor{Black}\\color{White}\\text{White}",
"params": {
"style": "background: black"
},
"output": ""
},
{
"input": "\\color{WildStrawberry}\\text{WildStrawberry}",
"params": [],
"output": ""
},
{
"input": "\\pagecolor{Black}\\color{Yellow}\\text{Yellow}",
"params": {
"style": "background: black"
},
"output": ""
},
{
"input": "\\color{YellowGreen}\\text{YellowGreen}",
"params": [],
"output": ""
},
{
"input": "\\color{YellowOrange}\\text{YellowOrange}",
"params": [],
"output": ""
},
{
"input": "a \\qquad b",
"params": [],
"output": ""
},
{
"input": "a \\quad b",
"params": [],
"output": ""
},
{
"input": "a\\ b",
"params": [],
"output": ""
},
{
"input": "a \\mbox{ } b",
"params": [],
"output": ""
},
{
"input": "a\\;b",
"params": [],
"output": ""
},
{
"input": "a\\,b",
"params": [],
"output": ""
},
{
"input": "ab",
"params": [],
"output": ""
},
{
"input": "\\mathit{ab}",
"params": [],
"output": ""
},
{
"input": "a\\!b",
"params": [],
"output": ""
},
{
"input": "0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots",
"params": [],
"output": ""
},
{
"input": "{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}",
"params": [],
"output": ""
},
{
"input": "\\int_{-N}^{N} e^x\\, dx",
"params": [],
"output": ""
},
{
"input": "\\sum_{i=0}^\\infty 2^{-i}",
"params": {
"display": "inline"
},
"output": ""
},
{
"input": "\\text{geometric series:}\\quad \\begin{align} \\sum_{i=0}^\\infty 2^{-i}=2 \\end{align}",
"params": {
"display": "block"
},
"output": ""
},
{
"input": "\\sum_{i=0}^\\infty 2^{-i}",
"params": [],
"output": ""
},
{
"input": "\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 ",
"params": [],
"output": ""
},
{
"input": "\\iint",
"params": [],
"output": ""
},
{
"input": "\\oint",
"params": [],
"output": ""
},
{
"input": "\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A",
"params": [],
"output": ""
},
{
"input": "\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A",
"params": [],
"output": ""
},
{
"input": "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A",
"params": [],
"output": ""
},
{
"input": "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle S}",
"params": [],
"output": ""
},
{
"input": "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle S}",
"params": [],
"output": ""
},
{
"input": "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
"params": [],
"output": ""
},
{
"input": "\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle S}",
"params": [],
"output": ""
},
{
"input": "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
"params": [],
"output": ""
},
{
"input": "\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle S}",
"params": [],
"output": ""
},
{
"input": "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
"params": [],
"output": ""
},
{
"input": "\\bold{P} = ",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle \\partial \\Omega}",
"params": [],
"output": ""
},
{
"input": "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
"params": [],
"output": ""
},
{
"input": "\\bold{P} = ",
"params": [],
"output": ""
},
{
"input": "{\\scriptstyle \\partial \\Omega}",
"params": [],
"output": ""
},
{
"input": "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
"params": [],
"output": ""
},
{
"input": "\\overset{\\frown}{AB}",
"params": [],
"output": ""
},
{
"input": "ax^2 + bx + c = 0",
"params": [],
"output": ""
},
{
"input": "ax^2 + bx + c = 0",
"params": [],
"output": ""
},
{
"input": "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
"params": [],
"output": ""
},
{
"input": "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
"params": [],
"output": ""
},
{
"input": "2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)",
"params": [],
"output": ""
},
{
"input": "2 = \\left(\n\\frac{\\left(3-x\\right) \\times 2}{3-x}\n\\right)",
"params": [],
"output": ""
},
{
"input": "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
"params": [],
"output": ""
},
{
"input": "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
"params": [],
"output": ""
},
{
"input": "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy",
"params": [],
"output": ""
},
{
"input": "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds\n= \\int_a^x f(y)(x-y)\\,dy",
"params": [],
"output": ""
},
{
"input": "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
"params": [],
"output": ""
},
{
"input": "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
"params": [],
"output": ""
},
{
"input": "\\sum_{i=0}^{n-1} i",
"params": [],
"output": ""
},
{
"input": "\\sum_{i=0}^{n-1} i",
"params": [],
"output": ""
},
{
"input": "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
"params": [],
"output": ""
},
{
"input": "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}\n{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
"params": [],
"output": ""
},
{
"input": "u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
"params": [],
"output": ""
},
{
"input": "u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
"params": [],
"output": ""
},
{
"input": "|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)",
"params": [],
"output": ""
},
{
"input": "|\\bar{z}| = |z|,\n|(\\bar{z})^n| = |z|^n,\n\\arg(z^n) = n \\arg(z)",
"params": [],
"output": ""
},
{
"input": "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
"params": [],
"output": ""
},
{
"input": "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
"params": [],
"output": ""
},
{
"input": "\\phi_n(\\kappa)\n= \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
"params": [],
"output": ""
},
{
"input": "\\phi_n(\\kappa) =\n\\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty\n\\frac{\\sin(\\kappa R)}{\\kappa R}\n\\frac{\\partial}{\\partial R}\n\\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
"params": [],
"output": ""
},
{
"input": "\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
"params": [],
"output": ""
},
{
"input": "\\phi_n(\\kappa) =\n0.033C_n^2\\kappa^{-11\/3},\\quad\n\\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
"params": [],
"output": ""
},
{
"input": "f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}",
"params": [],
"output": ""
},
{
"input": "\nf(x) =\n\\begin{cases}\n1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\\n1 - x^2 & \\text{otherwise}\n\\end{cases}\n",
"params": [],
"output": ""
},
{
"input": "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}",
"params": [],
"output": ""
},
{
"input": "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)\n= \\sum_{n=0}^\\infty\n\\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\n\\frac{z^n}{n!}",
"params": [],
"output": ""
},
{
"input": "\\frac{a}{b}\\ \\tfrac{a}{b}",
"params": [],
"output": ""
},
{
"input": "\\frac{a}{b}\\ \\tfrac{a}{b}",
"params": [],
"output": ""
},
{
"input": "S=dD\\,\\sin\\alpha\\!",
"params": [],
"output": ""
},
{
"input": "S=dD\\,\\sin\\alpha\\!",
"params": [],
"output": ""
},
{
"input": "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
"params": [],
"output": ""
},
{
"input": "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
"params": [],
"output": ""
},
{
"input": "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
"params": [],
"output": ""
},
{
"input": "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
"params": [],
"output": ""
},
{
"input": " with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|