[ [ "e^{i \\pi} + 1 = 0\\,\\!", "\"e^{i" ], [ "e^{i \\pi} + 1 = 0\\,\\!", "\"e^{i" ], [ "\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!", "\"\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i" ], [ "\\text{abc}", "\"\\text{abc}\"" ], [ "\\alpha\\,\\!", "\"\\alpha\\,\\!\"" ], [ " f(x) = x^2\\,\\!", "\"" ], [ "\\sqrt{2}", "\"\\sqrt{2}\"" ], [ "\\sqrt{1-e^2}\\!", "\"\\sqrt{1-e^2}\\!\"" ], [ "\\sqrt{1-z^3}\\!", "\"\\sqrt{1-z^3}\\!\"" ], [ "x", "\"x\"" ], [ "\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!", "\"\\dot{a}," ], [ "\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!", "\"\\check{a}," ], [ "\\hat{a}, \\widehat{a}, \\vec{a} \\!", "\"\\hat{a}," ], [ "\\exp_a b = a^b, \\exp b = e^b, 10^m \\!", "\"\\exp_a" ], [ "\\ln c, \\lg d = \\log e, \\log_{10} f \\!", "\"\\ln" ], [ "\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!", "\"\\sin" ], [ "\\arcsin h, \\arccos i, \\arctan j \\!", "\"\\arcsin" ], [ "\\sinh k, \\cosh l, \\tanh m, \\coth n \\!", "\"\\sinh" ], [ "\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!", "\"\\operatorname{sh}\\,k," ], [ "\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!", "\"\\operatorname{argsh}\\,o," ], [ "\\sgn r, \\left\\vert s \\right\\vert \\!", "\"\\sgn" ], [ "\\min(x,y), \\max(x,y) \\!", "\"\\min(x,y)," ], [ "\\min x, \\max y, \\inf s, \\sup t \\!", "\"\\min" ], [ "\\lim u, \\liminf v, \\limsup w \\!", "\"\\lim" ], [ "\\dim p, \\deg q, \\det m, \\ker\\phi \\!", "\"\\dim" ], [ "\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!", "\"\\Pr" ], [ "dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!", "\"dt," ], [ "dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!", "\"dy\/dx," ], [ "\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y", "\"\\prime," ], [ "\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!", "\"\\infty," ], [ "\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!", "\"\\Im," ], [ "s_k \\equiv 0 \\pmod{m} \\!", "\"s_k" ], [ "a\\,\\bmod\\,b \\!", "\"a\\,\\bmod\\,b" ], [ "\\gcd(m, n), \\operatorname{lcm}(m, n)", "\"\\gcd(m," ], [ "\\mid, \\nmid, \\shortmid, \\nshortmid \\!", "\"\\mid," ], [ "\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!", "\"\\surd," ], [ "+, -, \\pm, \\mp, \\dotplus \\!", "\"+," ], [ "\\times, \\div, \\divideontimes, \/, \\backslash \\!", "\"\\times," ], [ "\\cdot, * \\ast, \\star, \\circ, \\bullet \\!", "\"\\cdot," ], [ "\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!", "\"\\boxplus," ], [ "\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!", "\"\\oplus," ], [ "\\circleddash, \\circledcirc, \\circledast \\!", "\"\\circleddash," ], [ "\\bigoplus, \\bigotimes, \\bigodot \\!", "\"\\bigoplus," ], [ "\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!", "\"\\{" ], [ "\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!", "\"\\in," ], [ "\\cap, \\Cap, \\sqcap, \\bigcap \\!", "\"\\cap," ], [ "\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!", "\"\\cup," ], [ "\\setminus, \\smallsetminus, \\times \\!", "\"\\setminus," ], [ "\\subset, \\Subset, \\sqsubset \\!", "\"\\subset," ], [ "\\supset, \\Supset, \\sqsupset \\!", "\"\\supset," ], [ "\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!", "\"\\subseteq," ], [ "\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!", "\"\\supseteq," ], [ "\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!", "\"\\subseteqq," ], [ "\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!", "\"\\supseteqq," ], [ "=, \\ne, \\neq, \\equiv, \\not\\equiv \\!", "\"=," ], [ "\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!", "\"\\doteq," ], [ "\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!", "\"\\sim," ], [ "\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!", "\"\\approx," ], [ "<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!", "\"<," ], [ ">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!", "\">," ], [ "\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!", "\"\\le" ], [ "\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!", "\"\\ge" ], [ "\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!", "\"\\lessgtr" ], [ "\\leqslant, \\nleqslant, \\eqslantless \\!", "\"\\leqslant," ], [ "\\geqslant, \\ngeqslant, \\eqslantgtr \\!", "\"\\geqslant," ], [ "\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!", "\"\\lesssim," ], [ " \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,", "\"" ], [ "\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!", "\"\\prec," ], [ "\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!", "\"\\succ," ], [ "\\preccurlyeq, \\curlyeqprec \\,", "\"\\preccurlyeq," ], [ "\\succcurlyeq, \\curlyeqsucc \\,", "\"\\succcurlyeq," ], [ "\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,", "\"\\precsim," ], [ "\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,", "\"\\succsim," ], [ "\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!", "\"\\parallel," ], [ "\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!", "\"\\perp," ], [ "\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!", "\"\\Box," ], [ "\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!", "\"\\bigcirc," ], [ "\\vartriangle, \\triangledown\\!", "\"\\vartriangle," ], [ "\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!", "\"\\blacktriangle," ], [ "\\forall, \\exists, \\nexists \\!", "\"\\forall," ], [ "\\therefore, \\because, \\And \\!", "\"\\therefore," ], [ "\\or \\lor \\vee, \\curlyvee, \\bigvee \\!", "\"\\or" ], [ "\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!", "\"\\and" ], [ "\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!", "\"\\bar{q}," ], [ "\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!", "\"\\lnot" ], [ "\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!", "\"\\vdash" ], [ "\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!", "\"\\Vvdash" ], [ "\\ulcorner \\urcorner \\llcorner \\lrcorner \\,", "\"\\ulcorner" ], [ "\\Rrightarrow, \\Lleftarrow \\!", "\"\\Rrightarrow," ], [ "\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!", "\"\\Rightarrow," ], [ "\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!", "\"\\Leftarrow," ], [ "\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!", "\"\\Leftrightarrow," ], [ "\\Uparrow, \\Downarrow, \\Updownarrow \\!", "\"\\Uparrow," ], [ "\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!", "\"\\rightarrow" ], [ "\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!", "\"\\leftarrow" ], [ "\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!", "\"\\leftrightarrow," ], [ "\\uparrow, \\downarrow, \\updownarrow \\!", "\"\\uparrow," ], [ "\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!", "\"\\nearrow," ], [ "\\mapsto, \\longmapsto \\!", "\"\\mapsto," ], [ "\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!", "\"\\rightharpoonup" ], [ "\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!", "\"\\curvearrowleft" ], [ "\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!", "\"\\curvearrowright" ], [ "\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!", "\"\\hookrightarrow" ], [ "\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!", "\"\\amalg" ], [ "\\smile \\frown \\wr \\triangleleft \\triangleright\\!", "\"\\smile" ], [ "\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!", "\"\\diamondsuit," ], [ "\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!", "\"\\diagup" ], [ "\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!", "\"\\eqcirc" ], [ "\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!", "\"\\intercal" ], [ "\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!", "\"\\vartriangleleft" ], [ "\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!", "\"\\trianglelefteq" ], [ "a^2", "\"a^2\"" ], [ "a_2", "\"a_2\"" ], [ "10^{30} a^{2+2}", "\"10^{30}" ], [ "a_{i,j} b_{f'}", "\"a_{i,j}" ], [ "x_2^3", "\"x_2^3\"" ], [ "{x_2}^3 \\,\\!", "\"{x_2}^3" ], [ "10^{10^{8}}", "\"10^{10^{8}}\"" ], [ "\\sideset{_1^2}{_3^4}\\prod_a^b", "\"\\sideset{_1^2}{_3^4}\\prod_a^b\"" ], [ "{}_1^2\\!\\Omega_3^4", "\"{}_1^2\\!\\Omega_3^4\"" ], [ "\\overset{\\alpha}{\\omega}", "\"\\overset{\\alpha}{\\omega}\"" ], [ "\\underset{\\alpha}{\\omega}", "\"\\underset{\\alpha}{\\omega}\"" ], [ "\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}", "\"\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}\"" ], [ "\\stackrel{\\alpha}{\\omega}", "\"\\stackrel{\\alpha}{\\omega}\"" ], [ "x', y'', f', f''", "\"x'," ], [ "x^\\prime, y^{\\prime\\prime}", "\"x^\\prime," ], [ "\\dot{x}, \\ddot{x}", "\"\\dot{x}," ], [ " \\hat a \\ \\bar b \\ \\vec c", "\"" ], [ " \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}", "\"" ], [ " \\overline{g h i} \\ \\underline{j k l}", "\"" ], [ "\\overset{\\frown} {AB}", "\"\\overset{\\frown}" ], [ " A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C", "\"" ], [ "\\overbrace{ 1+2+\\cdots+100 }^{5050}", "\"\\overbrace{" ], [ "\\underbrace{ a+b+\\cdots+z }_{26}", "\"\\underbrace{" ], [ "\\sum_{k=1}^N k^2", "\"\\sum_{k=1}^N" ], [ "\\textstyle \\sum_{k=1}^N k^2", "\"\\textstyle" ], [ "\\frac{\\sum_{k=1}^N k^2}{a}", "\"\\frac{\\sum_{k=1}^N" ], [ "\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}", "\"\\frac{\\displaystyle" ], [ "\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}", "\"\\frac{\\sum\\limits^{^N}_{k=1}" ], [ "\\prod_{i=1}^N x_i", "\"\\prod_{i=1}^N" ], [ "\\textstyle \\prod_{i=1}^N x_i", "\"\\textstyle" ], [ "\\coprod_{i=1}^N x_i", "\"\\coprod_{i=1}^N" ], [ "\\textstyle \\coprod_{i=1}^N x_i", "\"\\textstyle" ], [ "\\lim_{n \\to \\infty}x_n", "\"\\lim_{n" ], [ "\\textstyle \\lim_{n \\to \\infty}x_n", "\"\\textstyle" ], [ "\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx", "\"\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\," ], [ "\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx", "\"\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\," ], [ "\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx", "\"\\textstyle" ], [ "\\textstyle \\int_{-N}^{N} e^x\\, dx", "\"\\textstyle" ], [ "\\iint\\limits_D \\, dx\\,dy", "\"\\iint\\limits_D" ], [ "\\iiint\\limits_E \\, dx\\,dy\\,dz", "\"\\iiint\\limits_E" ], [ "\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt", "\"\\iiiint\\limits_F" ], [ "\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy", "\"\\int_{(x,y)\\in" ], [ "\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy", "\"\\oint_{(x,y)\\in" ], [ "\\bigcap_{i=_1}^n E_i", "\"\\bigcap_{i=_1}^n" ], [ "\\bigcup_{i=_1}^n E_i", "\"\\bigcup_{i=_1}^n" ], [ "\\frac{2}{4}=0.5", "\"\\frac{2}{4}=0.5\"" ], [ "\\tfrac{2}{4} = 0.5", "\"\\tfrac{2}{4}" ], [ "\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a", "\"\\dfrac{2}{4}" ], [ "\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a", "\"\\cfrac{2}{c" ], [ "\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}", "\"\\cfrac{x}{1" ], [ "\\binom{n}{k}", "\"\\binom{n}{k}\"" ], [ "\\tbinom{n}{k}", "\"\\tbinom{n}{k}\"" ], [ "\\dbinom{n}{k}", "\"\\dbinom{n}{k}\"" ], [ "\\begin{matrix} x & y \\\\ z & v\n\\end{matrix}", "\"\\begin{matrix}" ], [ "\\begin{vmatrix} x & y \\\\ z & v\n\\end{vmatrix}", "\"\\begin{vmatrix}" ], [ "\\begin{Vmatrix} x & y \\\\ z & v\n\\end{Vmatrix}", "\"\\begin{Vmatrix}" ], [ "\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots\n& \\ddots & \\vdots \\\\ 0 & \\cdots &\n0\\end{bmatrix} ", "\"\\begin{bmatrix}" ], [ "\\begin{Bmatrix} x & y \\\\ z & v\n\\end{Bmatrix}", "\"\\begin{Bmatrix}" ], [ "\\begin{pmatrix} x & y \\\\ z & v\n\\end{pmatrix}", "\"\\begin{pmatrix}" ], [ "\n\\bigl( \\begin{smallmatrix}\na&b\\\\ c&d\n\\end{smallmatrix} \\bigr)\n", "\"
\\bigl(" ], [ "f(n) =\n\\begin{cases}\nn\/2, & \\text{if }n\\text{ is even} \\\\\n3n+1, & \\text{if }n\\text{ is odd}\n\\end{cases} ", "\"f(n)" ], [ "\n\\begin{align}\nf(x) & = (a+b)^2 \\\\\n& = a^2+2ab+b^2 \\\\\n\\end{align}\n", "\"
\\begin{align}
f(x)" ], [ "\n\\begin{alignat}{2}\nf(x) & = (a-b)^2 \\\\\n& = a^2-2ab+b^2 \\\\\n\\end{alignat}\n", "\"
\\begin{alignat}{2}
f(x)" ], [ "\\begin{array}{lcl}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}", "\"\\begin{array}{lcl}
z" ], [ "\\begin{array}{lcr}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}", "\"\\begin{array}{lcr}
z" ], [ "f(x) \\,\\!", "\"f(x)" ], [ "= \\sum_{n=0}^\\infty a_n x^n ", "\"=" ], [ "= a_0+a_1x+a_2x^2+\\cdots", "\"=" ], [ "f(x) \\,\\!", "\"f(x)" ], [ "= \\sum_{n=0}^\\infty a_n x^n ", "\"=" ], [ "= a_0 +a_1x+a_2x^2+\\cdots", "\"=" ], [ "\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}", "\"\\begin{cases}" ], [ "\n\\begin{array}{|c|c||c|} a & b & S \\\\\n\\hline\n0&0&1\\\\\n0&1&1\\\\\n1&0&1\\\\\n1&1&0\\\\\n\\end{array}\n", "\"
\\begin{array}{|c|c||c|}" ], [ "( \\frac{1}{2} )", "\"(" ], [ "\\left ( \\frac{1}{2} \\right )", "\"\\left" ], [ "\\left ( \\frac{a}{b} \\right )", "\"\\left" ], [ "\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack", "\"\\left" ], [ "\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace", "\"\\left" ], [ "\\left \\langle \\frac{a}{b} \\right \\rangle", "\"\\left" ], [ "\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|", "\"\\left" ], [ "\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil", "\"\\left" ], [ "\\left \/ \\frac{a}{b} \\right \\backslash", "\"\\left" ], [ "\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow", "\"\\left" ], [ "\\left [ 0,1 \\right )", "\"\\left" ], [ "\\left \\langle \\psi \\right |", "\"\\left" ], [ "\\left . \\frac{A}{B} \\right \\} \\to X", "\"\\left" ], [ "\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]", "\"\\big(" ], [ "\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle", "\"\\big\\{" ], [ "\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|", "\"\\big\\|" ], [ "\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil", "\"\\big\\lfloor" ], [ "\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow", "\"\\big\\uparrow" ], [ "\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow", "\"\\big\\updownarrow" ], [ "\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash", "\"\\big" ], [ "x^2 + y^2 + z^2 = 1 \\,", "\"x^2" ], [ "\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!", "\"\\Alpha" ], [ "\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!", "\"\\Iota" ], [ "\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!", "\"\\Sigma" ], [ "\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!", "\"\\alpha" ], [ "\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!", "\"\\iota" ], [ "\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!", "\"\\sigma" ], [ "\\varepsilon \\digamma \\varkappa \\varpi \\!", "\"\\varepsilon" ], [ "\\varrho \\varsigma \\vartheta \\varphi \\!", "\"\\varrho" ], [ "\\aleph \\beth \\gimel \\daleth \\!", "\"\\aleph" ], [ "\\mathbb{ABCDEFGHI} \\!", "\"\\mathbb{ABCDEFGHI}" ], [ "\\mathbb{JKLMNOPQR} \\!", "\"\\mathbb{JKLMNOPQR}" ], [ "\\mathbb{STUVWXYZ} \\!", "\"\\mathbb{STUVWXYZ}" ], [ "\\mathbf{ABCDEFGHI} \\!", "\"\\mathbf{ABCDEFGHI}" ], [ "\\mathbf{JKLMNOPQR} \\!", "\"\\mathbf{JKLMNOPQR}" ], [ "\\mathbf{STUVWXYZ} \\!", "\"\\mathbf{STUVWXYZ}" ], [ "\\mathbf{abcdefghijklm} \\!", "\"\\mathbf{abcdefghijklm}" ], [ "\\mathbf{nopqrstuvwxyz} \\!", "\"\\mathbf{nopqrstuvwxyz}" ], [ "\\mathbf{0123456789} \\!", "\"\\mathbf{0123456789}" ], [ "\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!", "\"\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta}" ], [ "\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!", "\"\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho}" ], [ "\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!", "\"\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega}" ], [ "\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!", "\"\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta}" ], [ "\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!", "\"\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho}" ], [ "\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!", "\"\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega}" ], [ "\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!", "\"\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi}" ], [ "\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!", "\"\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi}" ], [ "\\mathit{0123456789} \\!", "\"\\mathit{0123456789}" ], [ "\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!", "\"\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta}" ], [ "\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!", "\"\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho}" ], [ "\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!", "\"\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega}" ], [ "\\mathrm{ABCDEFGHI} \\!", "\"\\mathrm{ABCDEFGHI}" ], [ "\\mathrm{JKLMNOPQR} \\!", "\"\\mathrm{JKLMNOPQR}" ], [ "\\mathrm{STUVWXYZ} \\!", "\"\\mathrm{STUVWXYZ}" ], [ "\\mathrm{abcdefghijklm} \\!", "\"\\mathrm{abcdefghijklm}" ], [ "\\mathrm{nopqrstuvwxyz} \\!", "\"\\mathrm{nopqrstuvwxyz}" ], [ "\\mathrm{0123456789} \\!", "\"\\mathrm{0123456789}" ], [ "\\mathsf{ABCDEFGHI} \\!", "\"\\mathsf{ABCDEFGHI}" ], [ "\\mathsf{JKLMNOPQR} \\!", "\"\\mathsf{JKLMNOPQR}" ], [ "\\mathsf{STUVWXYZ} \\!", "\"\\mathsf{STUVWXYZ}" ], [ "\\mathsf{abcdefghijklm} \\!", "\"\\mathsf{abcdefghijklm}" ], [ "\\mathsf{nopqrstuvwxyz} \\!", "\"\\mathsf{nopqrstuvwxyz}" ], [ "\\mathsf{0123456789} \\!", "\"\\mathsf{0123456789}" ], [ "\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!", "\"\\mathsf{\\Alpha" ], [ "\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!", "\"\\mathsf{\\Iota" ], [ "\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!", "\"\\mathsf{\\Sigma" ], [ "\\mathcal{ABCDEFGHI} \\!", "\"\\mathcal{ABCDEFGHI}" ], [ "\\mathcal{JKLMNOPQR} \\!", "\"\\mathcal{JKLMNOPQR}" ], [ "\\mathcal{STUVWXYZ} \\!", "\"\\mathcal{STUVWXYZ}" ], [ "\\mathfrak{ABCDEFGHI} \\!", "\"\\mathfrak{ABCDEFGHI}" ], [ "\\mathfrak{JKLMNOPQR} \\!", "\"\\mathfrak{JKLMNOPQR}" ], [ "\\mathfrak{STUVWXYZ} \\!", "\"\\mathfrak{STUVWXYZ}" ], [ "\\mathfrak{abcdefghijklm} \\!", "\"\\mathfrak{abcdefghijklm}" ], [ "\\mathfrak{nopqrstuvwxyz} \\!", "\"\\mathfrak{nopqrstuvwxyz}" ], [ "\\mathfrak{0123456789} \\!", "\"\\mathfrak{0123456789}" ], [ "x y z", "\"x" ], [ "\\text{x y z}", "\"\\text{x" ], [ "\\text{if} n \\text{is even}", "\"\\text{if}" ], [ "\\text{if }n\\text{ is even}", "\"\\text{if" ], [ "\\text{if}~n\\ \\text{is even}", "\"\\text{if}~n\\" ], [ "{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}", "\"{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}\"" ], [ "x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}", "\"x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}\"" ], [ "e^{i \\pi} + 1 = 0", "\"e^{i" ], [ "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" ], [ "e^{i \\pi} + 1 = 0\\,\\!", "\"e^{i" ], [ "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" ], [ "e^{i \\pi} + 1 = 0", "\"e^{i" ], [ "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" ], [ "\\color{Apricot}\\text{Apricot}", "\"\\color{Apricot}\\text{Apricot}\"" ], [ "\\color{Aquamarine}\\text{Aquamarine}", "\"\\color{Aquamarine}\\text{Aquamarine}\"" ], [ "\\color{Bittersweet}\\text{Bittersweet}", "\"\\color{Bittersweet}\\text{Bittersweet}\"" ], [ "\\color{Black}\\text{Black}", "\"\\color{Black}\\text{Black}\"" ], [ "\\color{Blue}\\text{Blue}", "\"\\color{Blue}\\text{Blue}\"" ], [ "\\color{BlueGreen}\\text{BlueGreen}", "\"\\color{BlueGreen}\\text{BlueGreen}\"" ], [ "\\color{BlueViolet}\\text{BlueViolet}", "\"\\color{BlueViolet}\\text{BlueViolet}\"" ], [ "\\color{BrickRed}\\text{BrickRed}", "\"\\color{BrickRed}\\text{BrickRed}\"" ], [ "\\color{Brown}\\text{Brown}", "\"\\color{Brown}\\text{Brown}\"" ], [ "\\color{BurntOrange}\\text{BurntOrange}", "\"\\color{BurntOrange}\\text{BurntOrange}\"" ], [ "\\color{CadetBlue}\\text{CadetBlue}", "\"\\color{CadetBlue}\\text{CadetBlue}\"" ], [ "\\color{CarnationPink}\\text{CarnationPink}", "\"\\color{CarnationPink}\\text{CarnationPink}\"" ], [ "\\color{Cerulean}\\text{Cerulean}", "\"\\color{Cerulean}\\text{Cerulean}\"" ], [ "\\color{CornflowerBlue}\\text{CornflowerBlue}", "\"\\color{CornflowerBlue}\\text{CornflowerBlue}\"" ], [ "\\color{Cyan}\\text{Cyan}", "\"\\color{Cyan}\\text{Cyan}\"" ], [ "\\color{Dandelion}\\text{Dandelion}", "\"\\color{Dandelion}\\text{Dandelion}\"" ], [ "\\color{DarkOrchid}\\text{DarkOrchid}", "\"\\color{DarkOrchid}\\text{DarkOrchid}\"" ], [ "\\color{Emerald}\\text{Emerald}", "\"\\color{Emerald}\\text{Emerald}\"" ], [ "\\color{ForestGreen}\\text{ForestGreen}", "\"\\color{ForestGreen}\\text{ForestGreen}\"" ], [ "\\color{Fuchsia}\\text{Fuchsia}", "\"\\color{Fuchsia}\\text{Fuchsia}\"" ], [ "\\color{Goldenrod}\\text{Goldenrod}", "\"\\color{Goldenrod}\\text{Goldenrod}\"" ], [ "\\color{Gray}\\text{Gray}", "\"\\color{Gray}\\text{Gray}\"" ], [ "\\color{Green}\\text{Green}", "\"\\color{Green}\\text{Green}\"" ], [ "\\color{GreenYellow}\\text{GreenYellow}", "\"\\color{GreenYellow}\\text{GreenYellow}\"" ], [ "\\color{JungleGreen}\\text{JungleGreen}", "\"\\color{JungleGreen}\\text{JungleGreen}\"" ], [ "\\color{Lavender}\\text{Lavender}", "\"\\color{Lavender}\\text{Lavender}\"" ], [ "\\color{LimeGreen}\\text{LimeGreen}", "\"\\color{LimeGreen}\\text{LimeGreen}\"" ], [ "\\color{Magenta}\\text{Magenta}", "\"\\color{Magenta}\\text{Magenta}\"" ], [ "\\color{Mahogany}\\text{Mahogany}", "\"\\color{Mahogany}\\text{Mahogany}\"" ], [ "\\color{Maroon}\\text{Maroon}", "\"\\color{Maroon}\\text{Maroon}\"" ], [ "\\color{Melon}\\text{Melon}", "\"\\color{Melon}\\text{Melon}\"" ], [ "\\color{MidnightBlue}\\text{MidnightBlue}", "\"\\color{MidnightBlue}\\text{MidnightBlue}\"" ], [ "\\color{Mulberry}\\text{Mulberry}", "\"\\color{Mulberry}\\text{Mulberry}\"" ], [ "\\color{NavyBlue}\\text{NavyBlue}", "\"\\color{NavyBlue}\\text{NavyBlue}\"" ], [ "\\color{OliveGreen}\\text{OliveGreen}", "\"\\color{OliveGreen}\\text{OliveGreen}\"" ], [ "\\color{Orange}\\text{Orange}", "\"\\color{Orange}\\text{Orange}\"" ], [ "\\color{OrangeRed}\\text{OrangeRed}", "\"\\color{OrangeRed}\\text{OrangeRed}\"" ], [ "\\color{Orchid}\\text{Orchid}", "\"\\color{Orchid}\\text{Orchid}\"" ], [ "\\color{Peach}\\text{Peach}", "\"\\color{Peach}\\text{Peach}\"" ], [ "\\color{Periwinkle}\\text{Periwinkle}", "\"\\color{Periwinkle}\\text{Periwinkle}\"" ], [ "\\color{PineGreen}\\text{PineGreen}", "\"\\color{PineGreen}\\text{PineGreen}\"" ], [ "\\color{Plum}\\text{Plum}", "\"\\color{Plum}\\text{Plum}\"" ], [ "\\color{ProcessBlue}\\text{ProcessBlue}", "\"\\color{ProcessBlue}\\text{ProcessBlue}\"" ], [ "\\color{Purple}\\text{Purple}", "\"\\color{Purple}\\text{Purple}\"" ], [ "\\color{RawSienna}\\text{RawSienna}", "\"\\color{RawSienna}\\text{RawSienna}\"" ], [ "\\color{Red}\\text{Red}", "\"\\color{Red}\\text{Red}\"" ], [ "\\color{RedOrange}\\text{RedOrange}", "\"\\color{RedOrange}\\text{RedOrange}\"" ], [ "\\color{RedViolet}\\text{RedViolet}", "\"\\color{RedViolet}\\text{RedViolet}\"" ], [ "\\color{Rhodamine}\\text{Rhodamine}", "\"\\color{Rhodamine}\\text{Rhodamine}\"" ], [ "\\color{RoyalBlue}\\text{RoyalBlue}", "\"\\color{RoyalBlue}\\text{RoyalBlue}\"" ], [ "\\color{RoyalPurple}\\text{RoyalPurple}", "\"\\color{RoyalPurple}\\text{RoyalPurple}\"" ], [ "\\color{RubineRed}\\text{RubineRed}", "\"\\color{RubineRed}\\text{RubineRed}\"" ], [ "\\color{Salmon}\\text{Salmon}", "\"\\color{Salmon}\\text{Salmon}\"" ], [ "\\color{SeaGreen}\\text{SeaGreen}", "\"\\color{SeaGreen}\\text{SeaGreen}\"" ], [ "\\color{Sepia}\\text{Sepia}", "\"\\color{Sepia}\\text{Sepia}\"" ], [ "\\color{SkyBlue}\\text{SkyBlue}", "\"\\color{SkyBlue}\\text{SkyBlue}\"" ], [ "\\color{SpringGreen}\\text{SpringGreen}", "\"\\color{SpringGreen}\\text{SpringGreen}\"" ], [ "\\color{Tan}\\text{Tan}", "\"\\color{Tan}\\text{Tan}\"" ], [ "\\color{TealBlue}\\text{TealBlue}", "\"\\color{TealBlue}\\text{TealBlue}\"" ], [ "\\color{Thistle}\\text{Thistle}", "\"\\color{Thistle}\\text{Thistle}\"" ], [ "\\color{Turquoise}\\text{Turquoise}", "\"\\color{Turquoise}\\text{Turquoise}\"" ], [ "\\color{Violet}\\text{Violet}", "\"\\color{Violet}\\text{Violet}\"" ], [ "\\color{VioletRed}\\text{VioletRed}", "\"\\color{VioletRed}\\text{VioletRed}\"" ], [ "\\color{WildStrawberry}\\text{WildStrawberry}", "\"\\color{WildStrawberry}\\text{WildStrawberry}\"" ], [ "\\color{YellowGreen}\\text{YellowGreen}", "\"\\color{YellowGreen}\\text{YellowGreen}\"" ], [ "\\color{YellowOrange}\\text{YellowOrange}", "\"\\color{YellowOrange}\\text{YellowOrange}\"" ], [ "a \\qquad b", "\"a" ], [ "a \\quad b", "\"a" ], [ "a\\ b", "\"a\\" ], [ "a \\mbox{ } b", "\"a" ], [ "a\\;b", "\"a\\;b\"" ], [ "a\\,b", "\"a\\,b\"" ], [ "ab", "\"ab\"" ], [ "\\mathit{ab}", "\"\\mathit{ab}\"" ], [ "a\\!b", "\"a\\!b\"" ], [ "0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots", "\"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots\"" ], [ "{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}", "\"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}\"" ], [ "\\int_{-N}^{N} e^x\\, dx", "\"\\int_{-N}^{N}" ], [ "\\sum_{i=0}^\\infty 2^{-i}", "\"\\sum_{i=0}^\\infty" ], [ "\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 ", "\"\\text{geometric" ], [ "\\iint", "\"\\iint\"" ], [ "\\oint", "\"\\oint\"" ], [ "\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A", "\"\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset" ], [ "\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A", "\"\\int\\!\\!\\!\\!\\int_{\\partial" ], [ "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A", "\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial" ], [ "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A", "\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial" ], [ "{\\scriptstyle S}", "\"{\\scriptstyle" ], [ "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ", "\"(" ], [ "{\\scriptstyle S}", "\"{\\scriptstyle" ], [ "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ", "\"(" ], [ "\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ", "\"\\oint_C" ], [ "{\\scriptstyle S}", "\"{\\scriptstyle" ], [ "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}", "\"\\left" ], [ "\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ", "\"\\oint_{\\partial" ], [ "{\\scriptstyle S}", "\"{\\scriptstyle" ], [ "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}", "\"\\left" ], [ "\\bold{P} = ", "\"\\bold{P}" ], [ "{\\scriptstyle \\partial \\Omega}", "\"{\\scriptstyle" ], [ "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0", "\"\\bold{T}" ], [ "\\bold{P} = ", "\"\\bold{P}" ], [ "{\\scriptstyle \\partial \\Omega}", "\"{\\scriptstyle" ], [ "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0", "\"\\bold{T}" ], [ "\\overset{\\frown}{AB}", "\"\\overset{\\frown}{AB}\"" ], [ "ax^2 + bx + c = 0", "\"ax^2" ], [ "ax^2 + bx + c = 0", "\"ax^2" ], [ "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}", "\"x={-b\\pm\\sqrt{b^2-4ac}" ], [ "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}", "\"x={-b\\pm\\sqrt{b^2-4ac}" ], [ "2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)", "\"2" ], [ "2 = \\left(\n\\frac{\\left(3-x\\right) \\times 2}{3-x}\n\\right)", "\"2" ], [ "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}", "\"S_{\\text{new}}" ], [ "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}", "\"S_{\\text{new}}" ], [ "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy", "\"\\int_a^x" ], [ "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds\n= \\int_a^x f(y)(x-y)\\,dy", "\"\\int_a^x" ], [ "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0", "\"\\det(\\mathsf{A}-\\lambda\\mathsf{I})" ], [ "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0", "\"\\det(\\mathsf{A}-\\lambda\\mathsf{I})" ], [ "\\sum_{i=0}^{n-1} i", "\"\\sum_{i=0}^{n-1}" ], [ "\\sum_{i=0}^{n-1} i", "\"\\sum_{i=0}^{n-1}" ], [ "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}", "\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}\"" ], [ "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}\n{3^m\\left(m\\,3^n+n\\,3^m\\right)}", "\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}
{3^m\\left(m\\,3^n+n\\,3^m\\right)}\"" ], [ "u'' + p(x)u' + q(x)u=f(x),\\quad x>a", "\"u''" ], [ "u'' + p(x)u' + q(x)u=f(x),\\quad x>a", "\"u''" ], [ "|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)", "\"|\\bar{z}|" ], [ "|\\bar{z}| = |z|,\n|(\\bar{z})^n| = |z|^n,\n\\arg(z^n) = n \\arg(z)", "\"|\\bar{z}|" ], [ "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)", "\"\\lim_{z\\rightarrow" ], [ "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)", "\"\\lim_{z\\rightarrow" ], [ "\\phi_n(\\kappa)\n= \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR", "\"\\phi_n(\\kappa)
=" ], [ "\\phi_n(\\kappa) =\n\\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty\n\\frac{\\sin(\\kappa R)}{\\kappa R}\n\\frac{\\partial}{\\partial R}\n\\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR", "\"\\phi_n(\\kappa)" ], [ "\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}", "\"\\phi_n(\\kappa)" ], [ "\\phi_n(\\kappa) =\n0.033C_n^2\\kappa^{-11\/3},\\quad\n\\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}", "\"\\phi_n(\\kappa)" ], [ "f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}", "\"f(x)" ], [ "\nf(x) =\n\\begin{cases}\n1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\\n1 - x^2 & \\text{otherwise}\n\\end{cases}\n", "\"
f(x)" ], [ "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}", "\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)" ], [ "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)\n= \\sum_{n=0}^\\infty\n\\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\n\\frac{z^n}{n!}", "\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)
=" ], [ "\\frac{a}{b}\\ \\tfrac{a}{b}", "\"\\frac{a}{b}\\" ], [ "\\frac{a}{b}\\ \\tfrac{a}{b}", "\"\\frac{a}{b}\\" ], [ "S=dD\\,\\sin\\alpha\\!", "\"S=dD\\,\\sin\\alpha\\!\"" ], [ "S=dD\\,\\sin\\alpha\\!", "\"S=dD\\,\\sin\\alpha\\!\"" ], [ "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]", "\"V=\\frac16\\pi" ], [ "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]", "\"V=\\frac16\\pi" ], [ "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}", "\"\\begin{align}
u" ], [ "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}", "\"\\begin{align}
u" ], [ " with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|2+2", "Failed to parse (syntax error): with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped &lt;math&gt; tags. [[Image:foobar.jpg|thumb|<math>2+2<\/strong>\n" ], [ " with a thumbnail- math enabled [[Image:foobar.jpg|thumb|2+2", "\"" ], [ "