[
[
"e^{i \\pi} + 1 = 0\\,\\!",
""
],
[
"e^{i \\pi} + 1 = 0\\,\\!",
""
],
[
"\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!",
""
],
[
"\\text{abc}",
""
],
[
"\\alpha\\,\\!",
""
],
[
" f(x) = x^2\\,\\!",
""
],
[
"\\sqrt{2}",
""
],
[
"\\sqrt{1-e^2}\\!",
""
],
[
"\\sqrt{1-z^3}\\!",
""
],
[
"x",
""
],
[
"\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!",
""
],
[
"\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!",
""
],
[
"\\hat{a}, \\widehat{a}, \\vec{a} \\!",
""
],
[
"\\exp_a b = a^b, \\exp b = e^b, 10^m \\!",
""
],
[
"\\ln c, \\lg d = \\log e, \\log_{10} f \\!",
""
],
[
"\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!",
""
],
[
"\\arcsin h, \\arccos i, \\arctan j \\!",
""
],
[
"\\sinh k, \\cosh l, \\tanh m, \\coth n \\!",
""
],
[
"\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!",
""
],
[
"\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!",
""
],
[
"\\sgn r, \\left\\vert s \\right\\vert \\!",
""
],
[
"\\min(x,y), \\max(x,y) \\!",
""
],
[
"\\min x, \\max y, \\inf s, \\sup t \\!",
""
],
[
"\\lim u, \\liminf v, \\limsup w \\!",
""
],
[
"\\dim p, \\deg q, \\det m, \\ker\\phi \\!",
""
],
[
"\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!",
""
],
[
"dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!",
""
],
[
"dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!",
""
],
[
"\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y",
""
],
[
"\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!",
""
],
[
"\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!",
""
],
[
"s_k \\equiv 0 \\pmod{m} \\!",
""
],
[
"a\\,\\bmod\\,b \\!",
""
],
[
"\\gcd(m, n), \\operatorname{lcm}(m, n)",
""
],
[
"\\mid, \\nmid, \\shortmid, \\nshortmid \\!",
""
],
[
"\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!",
""
],
[
"+, -, \\pm, \\mp, \\dotplus \\!",
""
],
[
"\\times, \\div, \\divideontimes, \/, \\backslash \\!",
""
],
[
"\\cdot, * \\ast, \\star, \\circ, \\bullet \\!",
""
],
[
"\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!",
""
],
[
"\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!",
""
],
[
"\\circleddash, \\circledcirc, \\circledast \\!",
""
],
[
"\\bigoplus, \\bigotimes, \\bigodot \\!",
""
],
[
"\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!",
""
],
[
"\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!",
""
],
[
"\\cap, \\Cap, \\sqcap, \\bigcap \\!",
""
],
[
"\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!",
""
],
[
"\\setminus, \\smallsetminus, \\times \\!",
""
],
[
"\\subset, \\Subset, \\sqsubset \\!",
""
],
[
"\\supset, \\Supset, \\sqsupset \\!",
""
],
[
"\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!",
""
],
[
"\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!",
""
],
[
"\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!",
""
],
[
"\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!",
""
],
[
"=, \\ne, \\neq, \\equiv, \\not\\equiv \\!",
""
],
[
"\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!",
""
],
[
"\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!",
""
],
[
"\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!",
""
],
[
"<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!",
""
],
[
">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!",
""
],
[
"\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!",
""
],
[
"\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!",
""
],
[
"\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!",
""
],
[
"\\leqslant, \\nleqslant, \\eqslantless \\!",
""
],
[
"\\geqslant, \\ngeqslant, \\eqslantgtr \\!",
""
],
[
"\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!",
""
],
[
" \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,",
""
],
[
"\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!",
""
],
[
"\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!",
""
],
[
"\\preccurlyeq, \\curlyeqprec \\,",
""
],
[
"\\succcurlyeq, \\curlyeqsucc \\,",
""
],
[
"\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,",
""
],
[
"\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,",
""
],
[
"\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!",
""
],
[
"\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!",
""
],
[
"\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!",
""
],
[
"\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!",
""
],
[
"\\vartriangle, \\triangledown\\!",
""
],
[
"\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!",
""
],
[
"\\forall, \\exists, \\nexists \\!",
""
],
[
"\\therefore, \\because, \\And \\!",
""
],
[
"\\or \\lor \\vee, \\curlyvee, \\bigvee \\!",
""
],
[
"\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!",
""
],
[
"\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!",
""
],
[
"\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!",
""
],
[
"\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!",
""
],
[
"\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!",
""
],
[
"\\ulcorner \\urcorner \\llcorner \\lrcorner \\,",
""
],
[
"\\Rrightarrow, \\Lleftarrow \\!",
""
],
[
"\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!",
""
],
[
"\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!",
""
],
[
"\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!",
""
],
[
"\\Uparrow, \\Downarrow, \\Updownarrow \\!",
""
],
[
"\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!",
""
],
[
"\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!",
""
],
[
"\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!",
""
],
[
"\\uparrow, \\downarrow, \\updownarrow \\!",
""
],
[
"\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!",
""
],
[
"\\mapsto, \\longmapsto \\!",
""
],
[
"\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!",
""
],
[
"\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!",
""
],
[
"\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!",
""
],
[
"\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!",
""
],
[
"\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!",
""
],
[
"\\smile \\frown \\wr \\triangleleft \\triangleright\\!",
""
],
[
"\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!",
""
],
[
"\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!",
""
],
[
"\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!",
""
],
[
"\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!",
""
],
[
"\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!",
""
],
[
"\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!",
""
],
[
"a^2",
""
],
[
"a_2",
""
],
[
"10^{30} a^{2+2}",
""
],
[
"a_{i,j} b_{f'}",
""
],
[
"x_2^3",
""
],
[
"{x_2}^3 \\,\\!",
""
],
[
"10^{10^{8}}",
""
],
[
"\\sideset{_1^2}{_3^4}\\prod_a^b",
""
],
[
"{}_1^2\\!\\Omega_3^4",
""
],
[
"\\overset{\\alpha}{\\omega}",
""
],
[
"\\underset{\\alpha}{\\omega}",
""
],
[
"\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}",
""
],
[
"\\stackrel{\\alpha}{\\omega}",
""
],
[
"x', y'', f', f''",
""
],
[
"x^\\prime, y^{\\prime\\prime}",
""
],
[
"\\dot{x}, \\ddot{x}",
""
],
[
" \\hat a \\ \\bar b \\ \\vec c",
""
],
[
" \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}",
""
],
[
" \\overline{g h i} \\ \\underline{j k l}",
""
],
[
"\\overset{\\frown} {AB}",
""
],
[
" A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C",
""
],
[
"\\overbrace{ 1+2+\\cdots+100 }^{5050}",
""
],
[
"\\underbrace{ a+b+\\cdots+z }_{26}",
""
],
[
"\\sum_{k=1}^N k^2",
""
],
[
"\\textstyle \\sum_{k=1}^N k^2",
""
],
[
"\\frac{\\sum_{k=1}^N k^2}{a}",
""
],
[
"\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}",
""
],
[
"\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}",
""
],
[
"\\prod_{i=1}^N x_i",
""
],
[
"\\textstyle \\prod_{i=1}^N x_i",
""
],
[
"\\coprod_{i=1}^N x_i",
""
],
[
"\\textstyle \\coprod_{i=1}^N x_i",
""
],
[
"\\lim_{n \\to \\infty}x_n",
""
],
[
"\\textstyle \\lim_{n \\to \\infty}x_n",
""
],
[
"\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
""
],
[
"\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx",
""
],
[
"\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx",
""
],
[
"\\textstyle \\int_{-N}^{N} e^x\\, dx",
""
],
[
"\\iint\\limits_D \\, dx\\,dy",
""
],
[
"\\iiint\\limits_E \\, dx\\,dy\\,dz",
""
],
[
"\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt",
""
],
[
"\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
""
],
[
"\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy",
""
],
[
"\\bigcap_{i=_1}^n E_i",
""
],
[
"\\bigcup_{i=_1}^n E_i",
""
],
[
"\\frac{2}{4}=0.5",
""
],
[
"\\tfrac{2}{4} = 0.5",
""
],
[
"\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a",
""
],
[
"\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a",
""
],
[
"\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}",
""
],
[
"\\binom{n}{k}",
""
],
[
"\\tbinom{n}{k}",
""
],
[
"\\dbinom{n}{k}",
""
],
[
"\\begin{matrix} x & y \\\\ z & v\n\\end{matrix}",
""
],
[
"\\begin{vmatrix} x & y \\\\ z & v\n\\end{vmatrix}",
""
],
[
"\\begin{Vmatrix} x & y \\\\ z & v\n\\end{Vmatrix}",
""
],
[
"\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots\n& \\ddots & \\vdots \\\\ 0 & \\cdots &\n0\\end{bmatrix} ",
""
],
[
"\\begin{Bmatrix} x & y \\\\ z & v\n\\end{Bmatrix}",
""
],
[
"\\begin{pmatrix} x & y \\\\ z & v\n\\end{pmatrix}",
""
],
[
"\n\\bigl( \\begin{smallmatrix}\na&b\\\\ c&d\n\\end{smallmatrix} \\bigr)\n",
""
],
[
"f(n) =\n\\begin{cases}\nn\/2, & \\text{if }n\\text{ is even} \\\\\n3n+1, & \\text{if }n\\text{ is odd}\n\\end{cases} ",
""
],
[
"\n\\begin{align}\nf(x) & = (a+b)^2 \\\\\n& = a^2+2ab+b^2 \\\\\n\\end{align}\n",
""
],
[
"\n\\begin{alignat}{2}\nf(x) & = (a-b)^2 \\\\\n& = a^2-2ab+b^2 \\\\\n\\end{alignat}\n",
""
],
[
"\\begin{array}{lcl}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
""
],
[
"\\begin{array}{lcr}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}",
""
],
[
"f(x) \\,\\!",
""
],
[
"= \\sum_{n=0}^\\infty a_n x^n ",
""
],
[
"= a_0+a_1x+a_2x^2+\\cdots",
""
],
[
"f(x) \\,\\!",
""
],
[
"= \\sum_{n=0}^\\infty a_n x^n ",
""
],
[
"= a_0 +a_1x+a_2x^2+\\cdots",
""
],
[
"\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}",
""
],
[
"\n\\begin{array}{|c|c||c|} a & b & S \\\\\n\\hline\n0&0&1\\\\\n0&1&1\\\\\n1&0&1\\\\\n1&1&0\\\\\n\\end{array}\n",
""
],
[
"( \\frac{1}{2} )",
""
],
[
"\\left ( \\frac{1}{2} \\right )",
""
],
[
"\\left ( \\frac{a}{b} \\right )",
""
],
[
"\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack",
""
],
[
"\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace",
""
],
[
"\\left \\langle \\frac{a}{b} \\right \\rangle",
""
],
[
"\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|",
""
],
[
"\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil",
""
],
[
"\\left \/ \\frac{a}{b} \\right \\backslash",
""
],
[
"\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow",
""
],
[
"\\left [ 0,1 \\right )",
""
],
[
"\\left \\langle \\psi \\right |",
""
],
[
"\\left . \\frac{A}{B} \\right \\} \\to X",
""
],
[
"\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]",
""
],
[
"\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle",
""
],
[
"\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|",
""
],
[
"\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil",
""
],
[
"\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow",
""
],
[
"\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow",
""
],
[
"\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash",
""
],
[
"x^2 + y^2 + z^2 = 1 \\,",
""
],
[
"\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!",
""
],
[
"\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!",
""
],
[
"\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!",
""
],
[
"\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!",
""
],
[
"\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!",
""
],
[
"\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!",
""
],
[
"\\varepsilon \\digamma \\varkappa \\varpi \\!",
""
],
[
"\\varrho \\varsigma \\vartheta \\varphi \\!",
""
],
[
"\\aleph \\beth \\gimel \\daleth \\!",
""
],
[
"\\mathbb{ABCDEFGHI} \\!",
""
],
[
"\\mathbb{JKLMNOPQR} \\!",
""
],
[
"\\mathbb{STUVWXYZ} \\!",
""
],
[
"\\mathbf{ABCDEFGHI} \\!",
""
],
[
"\\mathbf{JKLMNOPQR} \\!",
""
],
[
"\\mathbf{STUVWXYZ} \\!",
""
],
[
"\\mathbf{abcdefghijklm} \\!",
""
],
[
"\\mathbf{nopqrstuvwxyz} \\!",
""
],
[
"\\mathbf{0123456789} \\!",
""
],
[
"\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
""
],
[
"\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
""
],
[
"\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
""
],
[
"\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!",
""
],
[
"\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!",
""
],
[
"\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!",
""
],
[
"\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!",
""
],
[
"\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!",
""
],
[
"\\mathit{0123456789} \\!",
""
],
[
"\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!",
""
],
[
"\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!",
""
],
[
"\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!",
""
],
[
"\\mathrm{ABCDEFGHI} \\!",
""
],
[
"\\mathrm{JKLMNOPQR} \\!",
""
],
[
"\\mathrm{STUVWXYZ} \\!",
""
],
[
"\\mathrm{abcdefghijklm} \\!",
""
],
[
"\\mathrm{nopqrstuvwxyz} \\!",
""
],
[
"\\mathrm{0123456789} \\!",
""
],
[
"\\mathsf{ABCDEFGHI} \\!",
""
],
[
"\\mathsf{JKLMNOPQR} \\!",
""
],
[
"\\mathsf{STUVWXYZ} \\!",
""
],
[
"\\mathsf{abcdefghijklm} \\!",
""
],
[
"\\mathsf{nopqrstuvwxyz} \\!",
""
],
[
"\\mathsf{0123456789} \\!",
""
],
[
"\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!",
""
],
[
"\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!",
""
],
[
"\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!",
""
],
[
"\\mathcal{ABCDEFGHI} \\!",
""
],
[
"\\mathcal{JKLMNOPQR} \\!",
""
],
[
"\\mathcal{STUVWXYZ} \\!",
""
],
[
"\\mathfrak{ABCDEFGHI} \\!",
""
],
[
"\\mathfrak{JKLMNOPQR} \\!",
""
],
[
"\\mathfrak{STUVWXYZ} \\!",
""
],
[
"\\mathfrak{abcdefghijklm} \\!",
""
],
[
"\\mathfrak{nopqrstuvwxyz} \\!",
""
],
[
"\\mathfrak{0123456789} \\!",
""
],
[
"x y z",
""
],
[
"\\text{x y z}",
""
],
[
"\\text{if} n \\text{is even}",
""
],
[
"\\text{if }n\\text{ is even}",
""
],
[
"\\text{if}~n\\ \\text{is even}",
""
],
[
"{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}",
""
],
[
"x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}",
""
],
[
"e^{i \\pi} + 1 = 0",
""
],
[
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
""
],
[
"e^{i \\pi} + 1 = 0\\,\\!",
""
],
[
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
""
],
[
"e^{i \\pi} + 1 = 0",
""
],
[
"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0",
""
],
[
"\\color{Apricot}\\text{Apricot}",
""
],
[
"\\color{Aquamarine}\\text{Aquamarine}",
""
],
[
"\\color{Bittersweet}\\text{Bittersweet}",
""
],
[
"\\color{Black}\\text{Black}",
""
],
[
"\\color{Blue}\\text{Blue}",
""
],
[
"\\color{BlueGreen}\\text{BlueGreen}",
""
],
[
"\\color{BlueViolet}\\text{BlueViolet}",
""
],
[
"\\color{BrickRed}\\text{BrickRed}",
""
],
[
"\\color{Brown}\\text{Brown}",
""
],
[
"\\color{BurntOrange}\\text{BurntOrange}",
""
],
[
"\\color{CadetBlue}\\text{CadetBlue}",
""
],
[
"\\color{CarnationPink}\\text{CarnationPink}",
""
],
[
"\\color{Cerulean}\\text{Cerulean}",
""
],
[
"\\color{CornflowerBlue}\\text{CornflowerBlue}",
""
],
[
"\\color{Cyan}\\text{Cyan}",
""
],
[
"\\color{Dandelion}\\text{Dandelion}",
""
],
[
"\\color{DarkOrchid}\\text{DarkOrchid}",
""
],
[
"\\color{Emerald}\\text{Emerald}",
""
],
[
"\\color{ForestGreen}\\text{ForestGreen}",
""
],
[
"\\color{Fuchsia}\\text{Fuchsia}",
""
],
[
"\\color{Goldenrod}\\text{Goldenrod}",
""
],
[
"\\color{Gray}\\text{Gray}",
""
],
[
"\\color{Green}\\text{Green}",
""
],
[
"\\color{GreenYellow}\\text{GreenYellow}",
""
],
[
"\\color{JungleGreen}\\text{JungleGreen}",
""
],
[
"\\color{Lavender}\\text{Lavender}",
""
],
[
"\\color{LimeGreen}\\text{LimeGreen}",
""
],
[
"\\color{Magenta}\\text{Magenta}",
""
],
[
"\\color{Mahogany}\\text{Mahogany}",
""
],
[
"\\color{Maroon}\\text{Maroon}",
""
],
[
"\\color{Melon}\\text{Melon}",
""
],
[
"\\color{MidnightBlue}\\text{MidnightBlue}",
""
],
[
"\\color{Mulberry}\\text{Mulberry}",
""
],
[
"\\color{NavyBlue}\\text{NavyBlue}",
""
],
[
"\\color{OliveGreen}\\text{OliveGreen}",
""
],
[
"\\color{Orange}\\text{Orange}",
""
],
[
"\\color{OrangeRed}\\text{OrangeRed}",
""
],
[
"\\color{Orchid}\\text{Orchid}",
""
],
[
"\\color{Peach}\\text{Peach}",
""
],
[
"\\color{Periwinkle}\\text{Periwinkle}",
""
],
[
"\\color{PineGreen}\\text{PineGreen}",
""
],
[
"\\color{Plum}\\text{Plum}",
""
],
[
"\\color{ProcessBlue}\\text{ProcessBlue}",
""
],
[
"\\color{Purple}\\text{Purple}",
""
],
[
"\\color{RawSienna}\\text{RawSienna}",
""
],
[
"\\color{Red}\\text{Red}",
""
],
[
"\\color{RedOrange}\\text{RedOrange}",
""
],
[
"\\color{RedViolet}\\text{RedViolet}",
""
],
[
"\\color{Rhodamine}\\text{Rhodamine}",
""
],
[
"\\color{RoyalBlue}\\text{RoyalBlue}",
""
],
[
"\\color{RoyalPurple}\\text{RoyalPurple}",
""
],
[
"\\color{RubineRed}\\text{RubineRed}",
""
],
[
"\\color{Salmon}\\text{Salmon}",
""
],
[
"\\color{SeaGreen}\\text{SeaGreen}",
""
],
[
"\\color{Sepia}\\text{Sepia}",
""
],
[
"\\color{SkyBlue}\\text{SkyBlue}",
""
],
[
"\\color{SpringGreen}\\text{SpringGreen}",
""
],
[
"\\color{Tan}\\text{Tan}",
""
],
[
"\\color{TealBlue}\\text{TealBlue}",
""
],
[
"\\color{Thistle}\\text{Thistle}",
""
],
[
"\\color{Turquoise}\\text{Turquoise}",
""
],
[
"\\color{Violet}\\text{Violet}",
""
],
[
"\\color{VioletRed}\\text{VioletRed}",
""
],
[
"\\color{WildStrawberry}\\text{WildStrawberry}",
""
],
[
"\\color{YellowGreen}\\text{YellowGreen}",
""
],
[
"\\color{YellowOrange}\\text{YellowOrange}",
""
],
[
"a \\qquad b",
""
],
[
"a \\quad b",
""
],
[
"a\\ b",
""
],
[
"a \\mbox{ } b",
""
],
[
"a\\;b",
""
],
[
"a\\,b",
""
],
[
"ab",
""
],
[
"\\mathit{ab}",
""
],
[
"a\\!b",
""
],
[
"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots",
""
],
[
"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}",
""
],
[
"\\int_{-N}^{N} e^x\\, dx",
""
],
[
"\\sum_{i=0}^\\infty 2^{-i}",
""
],
[
"\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 ",
""
],
[
"\\iint",
""
],
[
"\\oint",
""
],
[
"\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A",
""
],
[
"\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A",
""
],
[
"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A",
""
],
[
"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A",
""
],
[
"{\\scriptstyle S}",
""
],
[
"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
""
],
[
"{\\scriptstyle S}",
""
],
[
"( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ",
""
],
[
"\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
""
],
[
"{\\scriptstyle S}",
""
],
[
"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
""
],
[
"\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ",
""
],
[
"{\\scriptstyle S}",
""
],
[
"\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}",
""
],
[
"\\bold{P} = ",
""
],
[
"{\\scriptstyle \\partial \\Omega}",
""
],
[
"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
""
],
[
"\\bold{P} = ",
""
],
[
"{\\scriptstyle \\partial \\Omega}",
""
],
[
"\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0",
""
],
[
"\\overset{\\frown}{AB}",
""
],
[
"ax^2 + bx + c = 0",
""
],
[
"ax^2 + bx + c = 0",
""
],
[
"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
""
],
[
"x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}",
""
],
[
"2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)",
""
],
[
"2 = \\left(\n\\frac{\\left(3-x\\right) \\times 2}{3-x}\n\\right)",
""
],
[
"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
""
],
[
"S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}",
""
],
[
"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy",
""
],
[
"\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds\n= \\int_a^x f(y)(x-y)\\,dy",
""
],
[
"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
""
],
[
"\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0",
""
],
[
"\\sum_{i=0}^{n-1} i",
""
],
[
"\\sum_{i=0}^{n-1} i",
""
],
[
"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
""
],
[
"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}\n{3^m\\left(m\\,3^n+n\\,3^m\\right)}",
""
],
[
"u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
""
],
[
"u'' + p(x)u' + q(x)u=f(x),\\quad x>a",
""
],
[
"|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)",
""
],
[
"|\\bar{z}| = |z|,\n|(\\bar{z})^n| = |z|^n,\n\\arg(z^n) = n \\arg(z)",
""
],
[
"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
""
],
[
"\\lim_{z\\rightarrow z_0} f(z)=f(z_0)",
""
],
[
"\\phi_n(\\kappa)\n= \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
""
],
[
"\\phi_n(\\kappa) =\n\\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty\n\\frac{\\sin(\\kappa R)}{\\kappa R}\n\\frac{\\partial}{\\partial R}\n\\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR",
""
],
[
"\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
""
],
[
"\\phi_n(\\kappa) =\n0.033C_n^2\\kappa^{-11\/3},\\quad\n\\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}",
""
],
[
"f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}",
""
],
[
"\nf(x) =\n\\begin{cases}\n1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\\n1 - x^2 & \\text{otherwise}\n\\end{cases}\n",
""
],
[
"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}",
""
],
[
"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)\n= \\sum_{n=0}^\\infty\n\\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\n\\frac{z^n}{n!}",
""
],
[
"\\frac{a}{b}\\ \\tfrac{a}{b}",
""
],
[
"\\frac{a}{b}\\ \\tfrac{a}{b}",
""
],
[
"S=dD\\,\\sin\\alpha\\!",
""
],
[
"S=dD\\,\\sin\\alpha\\!",
""
],
[
"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
""
],
[
"V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]",
""
],
[
"\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
""
],
[
"\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}",
""
],
[
" with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|