From 7914fbea61311c48893b1f00017b1cb75f47c31d Mon Sep 17 00:00:00 2001 From: "C. Scott Ananian" Date: Tue, 29 Jul 2014 11:56:26 -0400 Subject: [PATCH] MathCoverageTest: encode test file using JSON instead of PHP serialize. This ensures that changes to the test inputs or outputs yield readable diffs when reviewing. Change-Id: I7b4ef8102ad7fbf7c289a27db60f304a140b93a5 --- maintenance/MathGenerateTests.php | 2 +- tests/MathCoverageTest.php | 4 +- tests/ParserTest.data | 73 -- tests/ParserTest.json | 1798 +++++++++++++++++++++++++++++ 4 files changed, 1801 insertions(+), 76 deletions(-) delete mode 100644 tests/ParserTest.data create mode 100644 tests/ParserTest.json diff --git a/maintenance/MathGenerateTests.php b/maintenance/MathGenerateTests.php index 471d8584c..e9426014b 100644 --- a/maintenance/MathGenerateTests.php +++ b/maintenance/MathGenerateTests.php @@ -89,7 +89,7 @@ class MathGenerateTests extends Maintenance echo '.'; } echo "Generated $i tests\n"; - file_put_contents( dirname( __FILE__ ) . '/../tests/ParserTest.data', serialize( $parserTests ) ); + file_put_contents( dirname( __FILE__ ) . '/../tests/ParserTest.json', json_encode( $parserTests, JSON_PRETTY_PRINT ) ); } } diff --git a/tests/MathCoverageTest.php b/tests/MathCoverageTest.php index 884ea0d8e..71d2422c2 100644 --- a/tests/MathCoverageTest.php +++ b/tests/MathCoverageTest.php @@ -76,12 +76,12 @@ class MathCoverageTest extends MediaWikiTestCase { } /** - * Gets the test-data from the file ParserTest.data + * Gets the test-data from the file ParserTest.json * @return array($input, $output) where $input is the test input string and $output is the rendered html5-output string */ public function testProvider() { - return unserialize( file_get_contents( dirname( __FILE__ ) . '/ParserTest.data' ) ); + return json_decode( file_get_contents( dirname( __FILE__ ) . '/ParserTest.json' ) ); } private function normalize( $input ) { diff --git a/tests/ParserTest.data b/tests/ParserTest.data deleted file mode 100644 index 4f8d15f2e..000000000 --- a/tests/ParserTest.data +++ /dev/null @@ -1,73 +0,0 @@ -a:449:{i:0;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"e^{i \pi} + 1 = 0\,\!";}i:1;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"e^{i \pi} + 1 = 0\,\!";}i:2;a:2:{i:0;s:67:"\definecolor{red}{RGB}{255,0,0}\pagecolor{red}e^{i \pi} + 1 = 0\,\!";i:1;s:184:"\definecolor{red}{RGB}{255,0,0}\pagecolor{red}e^{i \pi} + 1 = 0\,\!";}i:3;a:2:{i:0;s:10:"\text{abc}";i:1;s:127:"\text{abc}";}i:4;a:2:{i:0;s:10:"\alpha\,\!";i:1;s:127:"\alpha\,\!";}i:5;a:2:{i:0;s:15:" f(x) = x^2\,\!";i:1;s:132:" f(x) = x^2\,\!";}i:6;a:2:{i:0;s:8:"\sqrt{2}";i:1;s:125:"\sqrt{2}";}i:7;a:2:{i:0;s:14:"\sqrt{1-e^2}\!";i:1;s:131:"\sqrt{1-e^2}\!";}i:8;a:2:{i:0;s:14:"\sqrt{1-z^3}\!";i:1;s:131:"\sqrt{1-z^3}\!";}i:9;a:2:{i:0;s:1:"x";i:1;s:118:"x";}i:10;a:2:{i:0;s:42:"\dot{a}, \ddot{a}, \acute{a}, \grave{a} \!";i:1;s:159:"\dot{a}, \ddot{a}, \acute{a}, \grave{a} \!";}i:11;a:2:{i:0;s:43:"\check{a}, \breve{a}, \tilde{a}, \bar{a} \!";i:1;s:160:"\check{a}, \breve{a}, \tilde{a}, \bar{a} \!";}i:12;a:2:{i:0;s:32:"\hat{a}, \widehat{a}, \vec{a} \!";i:1;s:149:"\hat{a}, \widehat{a}, \vec{a} \!";}i:13;a:2:{i:0;s:37:"\exp_a b = a^b, \exp b = e^b, 10^m \!";i:1;s:154:"\exp_a b = a^b, \exp b = e^b, 10^m \!";}i:14;a:2:{i:0;s:37:"\ln c, \lg d = \log e, \log_{10} f \!";i:1;s:154:"\ln c, \lg d = \log e, \log_{10} f \!";}i:15;a:2:{i:0;s:48:"\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\!";i:1;s:165:"\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\!";}i:16;a:2:{i:0;s:34:"\arcsin h, \arccos i, \arctan j \!";i:1;s:151:"\arcsin h, \arccos i, \arctan j \!";}i:17;a:2:{i:0;s:37:"\sinh k, \cosh l, \tanh m, \coth n \!";i:1;s:154:"\sinh k, \cosh l, \tanh m, \coth n \!";}i:18;a:2:{i:0;s:91:"\operatorname{sh}\,k, \operatorname{ch}\,l, \operatorname{th}\,m, \operatorname{coth}\,n \!";i:1;s:208:"\operatorname{sh}\,k, \operatorname{ch}\,l, \operatorname{th}\,m, \operatorname{coth}\,n \!";}i:19;a:2:{i:0;s:76:"\operatorname{argsh}\,o, \operatorname{argch}\,p, \operatorname{argth}\,q \!";i:1;s:193:"\operatorname{argsh}\,o, \operatorname{argch}\,p, \operatorname{argth}\,q \!";}i:20;a:2:{i:0;s:35:"\sgn r, \left\vert s \right\vert \!";i:1;s:152:"\sgn r, \left\vert s \right\vert \!";}i:21;a:2:{i:0;s:23:"\min(x,y), \max(x,y) \!";i:1;s:140:"\min(x,y), \max(x,y) \!";}i:22;a:2:{i:0;s:33:"\min x, \max y, \inf s, \sup t \!";i:1;s:150:"\min x, \max y, \inf s, \sup t \!";}i:23;a:2:{i:0;s:31:"\lim u, \liminf v, \limsup w \!";i:1;s:148:"\lim u, \liminf v, \limsup w \!";}i:24;a:2:{i:0;s:35:"\dim p, \deg q, \det m, \ker\phi \!";i:1;s:152:"\dim p, \deg q, \det m, \ker\phi \!";}i:25;a:2:{i:0;s:41:"\Pr j, \hom l, \lVert z \rVert, \arg z \!";i:1;s:158:"\Pr j, \hom l, \lVert z \rVert, \arg z \!";}i:26;a:2:{i:0;s:49:"dt, \operatorname{d}\!t, \partial t, \nabla\psi\!";i:1;s:166:"dt, \operatorname{d}\!t, \partial t, \nabla\psi\!";}i:27;a:2:{i:0;s:155:"dy/dx, \operatorname{d}\!y/\operatorname{d}\!x, {dy \over dx}, {\operatorname{d}\!y\over\operatorname{d}\!x}, {\partial^2\over\partial x_1\partial x_2}y \!";i:1;s:272:"dy/dx, \operatorname{d}\!y/\operatorname{d}\!x, {dy \over dx}, {\operatorname{d}\!y\over\operatorname{d}\!x}, {\partial^2\over\partial x_1\partial x_2}y \!";}i:28;a:2:{i:0;s:66:"\prime, \backprime, f^\prime, f', f'', f^{(3)} \!, \dot y, \ddot y";i:1;s:198:"\prime, \backprime, f^\prime, f', f'', f^{(3)} \!, \dot y, \ddot y";}i:29;a:2:{i:0;s:64:"\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar \!";i:1;s:181:"\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar \!";}i:30;a:2:{i:0;s:62:"\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS \!";i:1;s:179:"\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS \!";}i:31;a:2:{i:0;s:24:"s_k \equiv 0 \pmod{m} \!";i:1;s:141:"s_k \equiv 0 \pmod{m} \!";}i:32;a:2:{i:0;s:14:"a\,\bmod\,b \!";i:1;s:131:"a\,\bmod\,b \!";}i:33;a:2:{i:0;s:36:"\gcd(m, n), \operatorname{lcm}(m, n)";i:1;s:153:"\gcd(m, n), \operatorname{lcm}(m, n)";}i:34;a:2:{i:0;s:37:"\mid, \nmid, \shortmid, \nshortmid \!";i:1;s:154:"\mid, \nmid, \shortmid, \nshortmid \!";}i:35;a:2:{i:0;s:57:"\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{x^3+y^3 \over 2} \!";i:1;s:174:"\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{x^3+y^3 \over 2} \!";}i:36;a:2:{i:0;s:27:"+, -, \pm, \mp, \dotplus \!";i:1;s:144:"+, -, \pm, \mp, \dotplus \!";}i:37;a:2:{i:0;s:46:"\times, \div, \divideontimes, /, \backslash \!";i:1;s:163:"\times, \div, \divideontimes, /, \backslash \!";}i:38;a:2:{i:0;s:39:"\cdot, * \ast, \star, \circ, \bullet \!";i:1;s:156:"\cdot, * \ast, \star, \circ, \bullet \!";}i:39;a:2:{i:0;s:42:"\boxplus, \boxminus, \boxtimes, \boxdot \!";i:1;s:159:"\boxplus, \boxminus, \boxtimes, \boxdot \!";}i:40;a:2:{i:0;s:42:"\oplus, \ominus, \otimes, \oslash, \odot\!";i:1;s:159:"\oplus, \ominus, \otimes, \oslash, \odot\!";}i:41;a:2:{i:0;s:42:"\circleddash, \circledcirc, \circledast \!";i:1;s:159:"\circleddash, \circledcirc, \circledast \!";}i:42;a:2:{i:0;s:34:"\bigoplus, \bigotimes, \bigodot \!";i:1;s:151:"\bigoplus, \bigotimes, \bigodot \!";}i:43;a:2:{i:0;s:42:"\{ \}, \O \empty \emptyset, \varnothing \!";i:1;s:159:"\{ \}, \O \empty \emptyset, \varnothing \!";}i:44;a:2:{i:0;s:36:"\in, \notin \not\in, \ni, \not\ni \!";i:1;s:153:"\in, \notin \not\in, \ni, \not\ni \!";}i:45;a:2:{i:0;s:30:"\cap, \Cap, \sqcap, \bigcap \!";i:1;s:147:"\cap, \Cap, \sqcap, \bigcap \!";}i:46;a:2:{i:0;s:60:"\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus \!";i:1;s:177:"\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus \!";}i:47;a:2:{i:0;s:36:"\setminus, \smallsetminus, \times \!";i:1;s:153:"\setminus, \smallsetminus, \times \!";}i:48;a:2:{i:0;s:30:"\subset, \Subset, \sqsubset \!";i:1;s:147:"\subset, \Subset, \sqsubset \!";}i:49;a:2:{i:0;s:30:"\supset, \Supset, \sqsupset \!";i:1;s:147:"\supset, \Supset, \sqsupset \!";}i:50;a:2:{i:0;s:64:"\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq \!";i:1;s:181:"\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq \!";}i:51;a:2:{i:0;s:64:"\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq \!";i:1;s:181:"\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq \!";}i:52;a:2:{i:0;s:55:"\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq \!";i:1;s:172:"\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq \!";}i:53;a:2:{i:0;s:55:"\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq \!";i:1;s:172:"\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq \!";}i:54;a:2:{i:0;s:35:"=, \ne, \neq, \equiv, \not\equiv \!";i:1;s:152:"=, \ne, \neq, \equiv, \not\equiv \!";}i:55;a:2:{i:0;s:64:"\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := \!";i:1;s:181:"\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := \!";}i:56;a:2:{i:0;s:78:"\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong \!";i:1;s:195:"\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong \!";}i:57;a:2:{i:0;s:64:"\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto \!";i:1;s:181:"\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto \!";}i:58;a:2:{i:0;s:52:"<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot \!";i:1;s:172:"<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot \!";}i:59;a:2:{i:0;s:50:">, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot \!";i:1;s:170:">, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot \!";}i:60;a:2:{i:0;s:53:"\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq \!";i:1;s:170:"\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq \!";}i:61;a:2:{i:0;s:53:"\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq \!";i:1;s:170:"\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq \!";}i:62;a:2:{i:0;s:66:"\lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless \!";i:1;s:183:"\lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless \!";}i:63;a:2:{i:0;s:38:"\leqslant, \nleqslant, \eqslantless \!";i:1;s:155:"\leqslant, \nleqslant, \eqslantless \!";}i:64;a:2:{i:0;s:37:"\geqslant, \ngeqslant, \eqslantgtr \!";i:1;s:154:"\geqslant, \ngeqslant, \eqslantgtr \!";}i:65;a:2:{i:0;s:43:"\lesssim, \lnsim, \lessapprox, \lnapprox \!";i:1;s:160:"\lesssim, \lnsim, \lessapprox, \lnapprox \!";}i:66;a:2:{i:0;s:42:" \gtrsim, \gnsim, \gtrapprox, \gnapprox \,";i:1;s:159:" \gtrsim, \gnsim, \gtrapprox, \gnapprox \,";}i:67;a:2:{i:0;s:46:"\prec, \nprec, \preceq, \npreceq, \precneqq \!";i:1;s:163:"\prec, \nprec, \preceq, \npreceq, \precneqq \!";}i:68;a:2:{i:0;s:46:"\succ, \nsucc, \succeq, \nsucceq, \succneqq \!";i:1;s:163:"\succ, \nsucc, \succeq, \nsucceq, \succneqq \!";}i:69;a:2:{i:0;s:29:"\preccurlyeq, \curlyeqprec \,";i:1;s:146:"\preccurlyeq, \curlyeqprec \,";}i:70;a:2:{i:0;s:29:"\succcurlyeq, \curlyeqsucc \,";i:1;s:146:"\succcurlyeq, \curlyeqsucc \,";}i:71;a:2:{i:0;s:49:"\precsim, \precnsim, \precapprox, \precnapprox \,";i:1;s:166:"\precsim, \precnsim, \precapprox, \precnapprox \,";}i:72;a:2:{i:0;s:49:"\succsim, \succnsim, \succapprox, \succnapprox \,";i:1;s:166:"\succsim, \succnsim, \succapprox, \succnapprox \,";}i:73;a:2:{i:0;s:57:"\parallel, \nparallel, \shortparallel, \nshortparallel \!";i:1;s:174:"\parallel, \nparallel, \shortparallel, \nshortparallel \!";}i:74;a:2:{i:0;s:59:"\perp, \angle, \sphericalangle, \measuredangle, 45^\circ \!";i:1;s:176:"\perp, \angle, \sphericalangle, \measuredangle, 45^\circ \!";}i:75;a:2:{i:0;s:75:"\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar \!";i:1;s:192:"\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar \!";}i:76;a:2:{i:0;s:55:"\bigcirc, \triangle \bigtriangleup, \bigtriangledown \!";i:1;s:172:"\bigcirc, \triangle \bigtriangleup, \bigtriangledown \!";}i:77;a:2:{i:0;s:29:"\vartriangle, \triangledown\!";i:1;s:146:"\vartriangle, \triangledown\!";}i:78;a:2:{i:0;s:78:"\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright \!";i:1;s:195:"\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright \!";}i:79;a:2:{i:0;s:29:"\forall, \exists, \nexists \!";i:1;s:146:"\forall, \exists, \nexists \!";}i:80;a:2:{i:0;s:29:"\therefore, \because, \And \!";i:1;s:146:"\therefore, \because, \And \!";}i:81;a:2:{i:0;s:36:"\or \lor \vee, \curlyvee, \bigvee \!";i:1;s:153:"\or \lor \vee, \curlyvee, \bigvee \!";}i:82;a:2:{i:0;s:44:"\and \land \wedge, \curlywedge, \bigwedge \!";i:1;s:161:"\and \land \wedge, \curlywedge, \bigwedge \!";}i:83;a:2:{i:0;s:52:"\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, \!";i:1;s:169:"\bar{q}, \bar{abc}, \overline{q}, \overline{abc}, \!";}i:84;a:2:{i:0;s:47:"\lnot \neg, \not\operatorname{R}, \bot, \top \!";i:1;s:164:"\lnot \neg, \not\operatorname{R}, \bot, \top \!";}i:85;a:2:{i:0;s:41:"\vdash \dashv, \vDash, \Vdash, \models \!";i:1;s:158:"\vdash \dashv, \vDash, \Vdash, \models \!";}i:86;a:2:{i:0;s:42:"\Vvdash \nvdash \nVdash \nvDash \nVDash \!";i:1;s:159:"\Vvdash \nvdash \nVdash \nvDash \nVDash \!";}i:87;a:2:{i:0;s:42:"\ulcorner \urcorner \llcorner \lrcorner \,";i:1;s:159:"\ulcorner \urcorner \llcorner \lrcorner \,";}i:88;a:2:{i:0;s:28:"\Rrightarrow, \Lleftarrow \!";i:1;s:145:"\Rrightarrow, \Lleftarrow \!";}i:89;a:2:{i:0;s:53:"\Rightarrow, \nRightarrow, \Longrightarrow \implies\!";i:1;s:170:"\Rightarrow, \nRightarrow, \Longrightarrow \implies\!";}i:90;a:2:{i:0;s:42:"\Leftarrow, \nLeftarrow, \Longleftarrow \!";i:1;s:159:"\Leftarrow, \nLeftarrow, \Longleftarrow \!";}i:91;a:2:{i:0;s:62:"\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff \!";i:1;s:179:"\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff \!";}i:92;a:2:{i:0;s:37:"\Uparrow, \Downarrow, \Updownarrow \!";i:1;s:154:"\Uparrow, \Downarrow, \Updownarrow \!";}i:93;a:2:{i:0;s:48:"\rightarrow \to, \nrightarrow, \longrightarrow\!";i:1;s:165:"\rightarrow \to, \nrightarrow, \longrightarrow\!";}i:94;a:2:{i:0;s:47:"\leftarrow \gets, \nleftarrow, \longleftarrow\!";i:1;s:164:"\leftarrow \gets, \nleftarrow, \longleftarrow\!";}i:95;a:2:{i:0;s:57:"\leftrightarrow, \nleftrightarrow, \longleftrightarrow \!";i:1;s:174:"\leftrightarrow, \nleftrightarrow, \longleftrightarrow \!";}i:96;a:2:{i:0;s:37:"\uparrow, \downarrow, \updownarrow \!";i:1;s:154:"\uparrow, \downarrow, \updownarrow \!";}i:97;a:2:{i:0;s:41:"\nearrow, \swarrow, \nwarrow, \searrow \!";i:1;s:158:"\nearrow, \swarrow, \nwarrow, \searrow \!";}i:98;a:2:{i:0;s:23:"\mapsto, \longmapsto \!";i:1;s:140:"\mapsto, \longmapsto \!";}i:99;a:2:{i:0;s:174:"\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!";i:1;s:291:"\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!";}i:100;a:2:{i:0;s:121:"\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \,\!";i:1;s:238:"\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \,\!";}i:101;a:2:{i:0;s:123:"\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \,\!";i:1;s:240:"\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \,\!";}i:102;a:2:{i:0;s:118:"\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \!";i:1;s:235:"\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \!";}i:103;a:2:{i:0;s:49:"\amalg \P \S \% \dagger \ddagger \ldots \cdots \!";i:1;s:166:"\amalg \P \S \% \dagger \ddagger \ldots \cdots \!";}i:104;a:2:{i:0;s:48:"\smile \frown \wr \triangleleft \triangleright\!";i:1;s:165:"\smile \frown \wr \triangleleft \triangleright\!";}i:105;a:2:{i:0;s:82:"\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp \!";i:1;s:199:"\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp \!";}i:106;a:2:{i:0;s:80:"\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \!";i:1;s:197:"\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \!";}i:107;a:2:{i:0;s:84:"\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \!";i:1;s:201:"\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \!";}i:108;a:2:{i:0;s:66:"\intercal \barwedge \veebar \doublebarwedge \between \pitchfork \!";i:1;s:183:"\intercal \barwedge \veebar \doublebarwedge \between \pitchfork \!";}i:109;a:2:{i:0;s:68:"\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \!";i:1;s:185:"\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \!";}i:110;a:2:{i:0;s:70:"\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \!";i:1;s:187:"\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \!";}i:111;a:2:{i:0;s:3:"a^2";i:1;s:120:"a^2";}i:112;a:2:{i:0;s:3:"a_2";i:1;s:120:"a_2";}i:113;a:2:{i:0;s:15:"10^{30} a^{2+2}";i:1;s:132:"10^{30} a^{2+2}";}i:114;a:2:{i:0;s:14:"a_{i,j} b_{f'}";i:1;s:136:"a_{i,j} b_{f'}";}i:115;a:2:{i:0;s:5:"x_2^3";i:1;s:122:"x_2^3";}i:116;a:2:{i:0;s:12:"{x_2}^3 \,\!";i:1;s:129:"{x_2}^3 \,\!";}i:117;a:2:{i:0;s:11:"10^{10^{8}}";i:1;s:128:"10^{10^{8}}";}i:118;a:2:{i:0;s:29:"\sideset{_1^2}{_3^4}\prod_a^b";i:1;s:146:"\sideset{_1^2}{_3^4}\prod_a^b";}i:119;a:2:{i:0;s:18:"{}_1^2\!\Omega_3^4";i:1;s:135:"{}_1^2\!\Omega_3^4";}i:120;a:2:{i:0;s:24:"\overset{\alpha}{\omega}";i:1;s:141:"\overset{\alpha}{\omega}";}i:121;a:2:{i:0;s:25:"\underset{\alpha}{\omega}";i:1;s:142:"\underset{\alpha}{\omega}";}i:122;a:2:{i:0;s:43:"\overset{\alpha}{\underset{\gamma}{\omega}}";i:1;s:160:"\overset{\alpha}{\underset{\gamma}{\omega}}";}i:123;a:2:{i:0;s:25:"\stackrel{\alpha}{\omega}";i:1;s:142:"\stackrel{\alpha}{\omega}";}i:124;a:2:{i:0;s:16:"x', y'', f', f''";i:1;s:163:"x', y'', f', f''";}i:125;a:2:{i:0;s:26:"x^\prime, y^{\prime\prime}";i:1;s:143:"x^\prime, y^{\prime\prime}";}i:126;a:2:{i:0;s:17:"\dot{x}, \ddot{x}";i:1;s:134:"\dot{x}, \ddot{x}";}i:127;a:2:{i:0;s:25:" \hat a \ \bar b \ \vec c";i:1;s:142:" \hat a \ \bar b \ \vec c";}i:128;a:2:{i:0;s:61:" \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}";i:1;s:178:" \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}";}i:129;a:2:{i:0;s:37:" \overline{g h i} \ \underline{j k l}";i:1;s:154:" \overline{g h i} \ \underline{j k l}";}i:130;a:2:{i:0;s:21:"\overset{\frown} {AB}";i:1;s:138:"\overset{\frown} {AB}";}i:131;a:2:{i:0;s:53:" A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C";i:1;s:170:" A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C";}i:132;a:2:{i:0;s:35:"\overbrace{ 1+2+\cdots+100 }^{5050}";i:1;s:152:"\overbrace{ 1+2+\cdots+100 }^{5050}";}i:133;a:2:{i:0;s:32:"\underbrace{ a+b+\cdots+z }_{26}";i:1;s:149:"\underbrace{ a+b+\cdots+z }_{26}";}i:134;a:2:{i:0;s:16:"\sum_{k=1}^N k^2";i:1;s:133:"\sum_{k=1}^N k^2";}i:135;a:2:{i:0;s:27:"\textstyle \sum_{k=1}^N k^2";i:1;s:144:"\textstyle \sum_{k=1}^N k^2";}i:136;a:2:{i:0;s:26:"\frac{\sum_{k=1}^N k^2}{a}";i:1;s:143:"\frac{\sum_{k=1}^N k^2}{a}";}i:137;a:2:{i:0;s:40:"\frac{\displaystyle \sum_{k=1}^N k^2}{a}";i:1;s:157:"\frac{\displaystyle \sum_{k=1}^N k^2}{a}";}i:138;a:2:{i:0;s:36:"\frac{\sum\limits^{^N}_{k=1} k^2}{a}";i:1;s:153:"\frac{\sum\limits^{^N}_{k=1} k^2}{a}";}i:139;a:2:{i:0;s:17:"\prod_{i=1}^N x_i";i:1;s:134:"\prod_{i=1}^N x_i";}i:140;a:2:{i:0;s:28:"\textstyle \prod_{i=1}^N x_i";i:1;s:145:"\textstyle \prod_{i=1}^N x_i";}i:141;a:2:{i:0;s:19:"\coprod_{i=1}^N x_i";i:1;s:136:"\coprod_{i=1}^N x_i";}i:142;a:2:{i:0;s:30:"\textstyle \coprod_{i=1}^N x_i";i:1;s:147:"\textstyle \coprod_{i=1}^N x_i";}i:143;a:2:{i:0;s:22:"\lim_{n \to \infty}x_n";i:1;s:139:"\lim_{n \to \infty}x_n";}i:144;a:2:{i:0;s:33:"\textstyle \lim_{n \to \infty}x_n";i:1;s:150:"\textstyle \lim_{n \to \infty}x_n";}i:145;a:2:{i:0;s:41:"\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx";i:1;s:158:"\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx";}i:146;a:2:{i:0;s:34:"\int_{1}^{3}\frac{e^3/x}{x^2}\, dx";i:1;s:151:"\int_{1}^{3}\frac{e^3/x}{x^2}\, dx";}i:147;a:2:{i:0;s:40:"\textstyle \int\limits_{-N}^{N} e^x\, dx";i:1;s:157:"\textstyle \int\limits_{-N}^{N} e^x\, dx";}i:148;a:2:{i:0;s:33:"\textstyle \int_{-N}^{N} e^x\, dx";i:1;s:150:"\textstyle \int_{-N}^{N} e^x\, dx";}i:149;a:2:{i:0;s:24:"\iint\limits_D \, dx\,dy";i:1;s:141:"\iint\limits_D \, dx\,dy";}i:150;a:2:{i:0;s:29:"\iiint\limits_E \, dx\,dy\,dz";i:1;s:146:"\iiint\limits_E \, dx\,dy\,dz";}i:151;a:2:{i:0;s:34:"\iiiint\limits_F \, dx\,dy\,dz\,dt";i:1;s:151:"\iiiint\limits_F \, dx\,dy\,dz\,dt";}i:152;a:2:{i:0;s:38:"\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy";i:1;s:155:"\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy";}i:153;a:2:{i:0;s:39:"\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy";i:1;s:156:"\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy";}i:154;a:2:{i:0;s:20:"\bigcap_{i=_1}^n E_i";i:1;s:137:"\bigcap_{i=_1}^n E_i";}i:155;a:2:{i:0;s:20:"\bigcup_{i=_1}^n E_i";i:1;s:137:"\bigcup_{i=_1}^n E_i";}i:156;a:2:{i:0;s:15:"\frac{2}{4}=0.5";i:1;s:132:"\frac{2}{4}=0.5";}i:157;a:2:{i:0;s:18:"\tfrac{2}{4} = 0.5";i:1;s:135:"\tfrac{2}{4} = 0.5";}i:158;a:2:{i:0;s:72:"\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a";i:1;s:189:"\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a";}i:159;a:2:{i:0;s:46:"\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a";i:1;s:163:"\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a";}i:160;a:2:{i:0;s:60:"\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}";i:1;s:177:"\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2}";}i:161;a:2:{i:0;s:12:"\binom{n}{k}";i:1;s:129:"\binom{n}{k}";}i:162;a:2:{i:0;s:13:"\tbinom{n}{k}";i:1;s:130:"\tbinom{n}{k}";}i:163;a:2:{i:0;s:13:"\dbinom{n}{k}";i:1;s:130:"\dbinom{n}{k}";}i:164;a:2:{i:0;s:42:"\begin{matrix} x & y \\ z & v -\end{matrix}";i:1;s:171:"\begin{matrix} x & y \\ z & v
\end{matrix}";}i:165;a:2:{i:0;s:44:"\begin{vmatrix} x & y \\ z & v -\end{vmatrix}";i:1;s:173:"\begin{vmatrix} x & y \\ z & v
\end{vmatrix}";}i:166;a:2:{i:0;s:44:"\begin{Vmatrix} x & y \\ z & v -\end{Vmatrix}";i:1;s:173:"\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}";}i:167;a:2:{i:0;s:90:"\begin{bmatrix} 0 & \cdots & 0 \\ \vdots -& \ddots & \vdots \\ 0 & \cdots & -0\end{bmatrix} ";i:1;s:239:"\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix} ";}i:168;a:2:{i:0;s:44:"\begin{Bmatrix} x & y \\ z & v -\end{Bmatrix}";i:1;s:173:"\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}";}i:169;a:2:{i:0;s:44:"\begin{pmatrix} x & y \\ z & v -\end{pmatrix}";i:1;s:173:"\begin{pmatrix} x & y \\ z & v
\end{pmatrix}";}i:170;a:2:{i:0;s:63:" -\bigl( \begin{smallmatrix} -a&b\\ c&d -\end{smallmatrix} \bigr) -";i:1;s:204:"
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
";}i:171;a:2:{i:0;s:104:"f(n) = -\begin{cases} -n/2, & \text{if }n\text{ is even} \\ -3n+1, & \text{if }n\text{ is odd} -\end{cases} ";i:1;s:245:"f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases} ";}i:172;a:2:{i:0;s:66:" -\begin{align} -f(x) & = (a+b)^2 \\ -& = a^2+2ab+b^2 \\ -\end{align} -";i:1;s:211:"
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}
";}i:173;a:2:{i:0;s:73:" -\begin{alignat}{2} -f(x) & = (a-b)^2 \\ -& = a^2-2ab+b^2 \\ -\end{alignat} -";i:1;s:218:"
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}
";}i:174;a:2:{i:0;s:68:"\begin{array}{lcl} -z & = & a \\ -f(x,y,z) & = & x + y + z -\end{array}";i:1;s:213:"\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}";}i:175;a:2:{i:0;s:68:"\begin{array}{lcr} -z & = & a \\ -f(x,y,z) & = & x + y + z -\end{array}";i:1;s:213:"\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}";}i:176;a:2:{i:0;s:9:"f(x) \,\!";i:1;s:126:"f(x) \,\!";}i:177;a:2:{i:0;s:28:"= \sum_{n=0}^\infty a_n x^n ";i:1;s:145:"= \sum_{n=0}^\infty a_n x^n ";}i:178;a:2:{i:0;s:24:"= a_0+a_1x+a_2x^2+\cdots";i:1;s:141:"= a_0+a_1x+a_2x^2+\cdots";}i:179;a:2:{i:0;s:9:"f(x) \,\!";i:1;s:126:"f(x) \,\!";}i:180;a:2:{i:0;s:28:"= \sum_{n=0}^\infty a_n x^n ";i:1;s:145:"= \sum_{n=0}^\infty a_n x^n ";}i:181;a:2:{i:0;s:25:"= a_0 +a_1x+a_2x^2+\cdots";i:1;s:142:"= a_0 +a_1x+a_2x^2+\cdots";}i:182;a:2:{i:0;s:70:"\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}";i:1;s:187:"\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}";}i:183;a:2:{i:0;s:89:" -\begin{array}{|c|c||c|} a & b & S \\ -\hline -0&0&1\\ -0&1&1\\ -1&0&1\\ -1&1&0\\ -\end{array} -";i:1;s:278:"
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
";}i:184;a:2:{i:0;s:15:"( \frac{1}{2} )";i:1;s:132:"( \frac{1}{2} )";}i:185;a:2:{i:0;s:28:"\left ( \frac{1}{2} \right )";i:1;s:145:"\left ( \frac{1}{2} \right )";}i:186;a:2:{i:0;s:28:"\left ( \frac{a}{b} \right )";i:1;s:145:"\left ( \frac{a}{b} \right )";}i:187;a:2:{i:0;s:75:"\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack";i:1;s:192:"\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack";}i:188;a:2:{i:0;s:77:"\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace";i:1;s:194:"\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace";}i:189;a:2:{i:0;s:40:"\left \langle \frac{a}{b} \right \rangle";i:1;s:157:"\left \langle \frac{a}{b} \right \rangle";}i:190;a:2:{i:0;s:72:"\left | \frac{a}{b} \right \vert \quad \left \Vert \frac{c}{d} \right \|";i:1;s:189:"\left | \frac{a}{b} \right \vert \quad \left \Vert \frac{c}{d} \right \|";}i:191;a:2:{i:0;s:85:"\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil";i:1;s:202:"\left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil";}i:192;a:2:{i:0;s:37:"\left / \frac{a}{b} \right \backslash";i:1;s:154:"\left / \frac{a}{b} \right \backslash";}i:193;a:2:{i:0;s:152:"\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow";i:1;s:269:"\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow";}i:194;a:2:{i:0;s:20:"\left [ 0,1 \right )";i:1;s:137:"\left [ 0,1 \right )";}i:195;a:2:{i:0;s:27:"\left \langle \psi \right |";i:1;s:144:"\left \langle \psi \right |";}i:196;a:2:{i:0;s:35:"\left . \frac{A}{B} \right \} \to X";i:1;s:152:"\left . \frac{A}{B} \right \} \to X";}i:197;a:2:{i:0;s:57:"\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]";i:1;s:174:"\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]";}i:198;a:2:{i:0;s:85:"\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle";i:1;s:202:"\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle";}i:199;a:2:{i:0;s:61:"\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|";i:1;s:178:"\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|";}i:200;a:2:{i:0;s:101:"\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil";i:1;s:218:"\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil";}i:201;a:2:{i:0;s:121:"\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow";i:1;s:238:"\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow";}i:202;a:2:{i:0;s:145:"\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow";i:1;s:262:"\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow";}i:203;a:2:{i:0;s:97:"\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash";i:1;s:214:"\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash";}i:204;a:2:{i:0;s:22:"x^2 + y^2 + z^2 = 1 \,";i:1;s:139:"x^2 + y^2 + z^2 = 1 \,";}i:205;a:2:{i:0;s:56:"\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \!";i:1;s:173:"\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \!";}i:206;a:2:{i:0;s:44:"\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho \!";i:1;s:161:"\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho \!";}i:207;a:2:{i:0;s:45:"\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \!";i:1;s:162:"\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega \!";}i:208;a:2:{i:0;s:56:"\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \!";i:1;s:173:"\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \!";}i:209;a:2:{i:0;s:44:"\iota \kappa \lambda \mu \nu \xi \pi \rho \!";i:1;s:161:"\iota \kappa \lambda \mu \nu \xi \pi \rho \!";}i:210;a:2:{i:0;s:45:"\sigma \tau \upsilon \phi \chi \psi \omega \!";i:1;s:162:"\sigma \tau \upsilon \phi \chi \psi \omega \!";}i:211;a:2:{i:0;s:40:"\varepsilon \digamma \varkappa \varpi \!";i:1;s:157:"\varepsilon \digamma \varkappa \varpi \!";}i:212;a:2:{i:0;s:38:"\varrho \varsigma \vartheta \varphi \!";i:1;s:155:"\varrho \varsigma \vartheta \varphi \!";}i:213;a:2:{i:0;s:30:"\aleph \beth \gimel \daleth \!";i:1;s:147:"\aleph \beth \gimel \daleth \!";}i:214;a:2:{i:0;s:21:"\mathbb{ABCDEFGHI} \!";i:1;s:138:"\mathbb{ABCDEFGHI} \!";}i:215;a:2:{i:0;s:21:"\mathbb{JKLMNOPQR} \!";i:1;s:138:"\mathbb{JKLMNOPQR} \!";}i:216;a:2:{i:0;s:20:"\mathbb{STUVWXYZ} \!";i:1;s:137:"\mathbb{STUVWXYZ} \!";}i:217;a:2:{i:0;s:21:"\mathbf{ABCDEFGHI} \!";i:1;s:138:"\mathbf{ABCDEFGHI} \!";}i:218;a:2:{i:0;s:21:"\mathbf{JKLMNOPQR} \!";i:1;s:138:"\mathbf{JKLMNOPQR} \!";}i:219;a:2:{i:0;s:20:"\mathbf{STUVWXYZ} \!";i:1;s:137:"\mathbf{STUVWXYZ} \!";}i:220;a:2:{i:0;s:25:"\mathbf{abcdefghijklm} \!";i:1;s:142:"\mathbf{abcdefghijklm} \!";}i:221;a:2:{i:0;s:25:"\mathbf{nopqrstuvwxyz} \!";i:1;s:142:"\mathbf{nopqrstuvwxyz} \!";}i:222;a:2:{i:0;s:22:"\mathbf{0123456789} \!";i:1;s:139:"\mathbf{0123456789} \!";}i:223;a:2:{i:0;s:62:"\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";i:1;s:179:"\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";}i:224;a:2:{i:0;s:50:"\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";i:1;s:167:"\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";}i:225;a:2:{i:0;s:52:"\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";i:1;s:169:"\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";}i:226;a:2:{i:0;s:62:"\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} \!";i:1;s:179:"\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} \!";}i:227;a:2:{i:0;s:50:"\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} \!";i:1;s:167:"\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} \!";}i:228;a:2:{i:0;s:52:"\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} \!";i:1;s:169:"\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} \!";}i:229;a:2:{i:0;s:50:"\boldsymbol{\varepsilon\digamma\varkappa\varpi} \!";i:1;s:167:"\boldsymbol{\varepsilon\digamma\varkappa\varpi} \!";}i:230;a:2:{i:0;s:48:"\boldsymbol{\varrho\varsigma\vartheta\varphi} \!";i:1;s:165:"\boldsymbol{\varrho\varsigma\vartheta\varphi} \!";}i:231;a:2:{i:0;s:22:"\mathit{0123456789} \!";i:1;s:139:"\mathit{0123456789} \!";}i:232;a:2:{i:0;s:58:"\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";i:1;s:175:"\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} \!";}i:233;a:2:{i:0;s:46:"\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";i:1;s:163:"\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} \!";}i:234;a:2:{i:0;s:48:"\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";i:1;s:165:"\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} \!";}i:235;a:2:{i:0;s:21:"\mathrm{ABCDEFGHI} \!";i:1;s:138:"\mathrm{ABCDEFGHI} \!";}i:236;a:2:{i:0;s:21:"\mathrm{JKLMNOPQR} \!";i:1;s:138:"\mathrm{JKLMNOPQR} \!";}i:237;a:2:{i:0;s:20:"\mathrm{STUVWXYZ} \!";i:1;s:137:"\mathrm{STUVWXYZ} \!";}i:238;a:2:{i:0;s:25:"\mathrm{abcdefghijklm} \!";i:1;s:142:"\mathrm{abcdefghijklm} \!";}i:239;a:2:{i:0;s:25:"\mathrm{nopqrstuvwxyz} \!";i:1;s:142:"\mathrm{nopqrstuvwxyz} \!";}i:240;a:2:{i:0;s:22:"\mathrm{0123456789} \!";i:1;s:139:"\mathrm{0123456789} \!";}i:241;a:2:{i:0;s:21:"\mathsf{ABCDEFGHI} \!";i:1;s:138:"\mathsf{ABCDEFGHI} \!";}i:242;a:2:{i:0;s:21:"\mathsf{JKLMNOPQR} \!";i:1;s:138:"\mathsf{JKLMNOPQR} \!";}i:243;a:2:{i:0;s:20:"\mathsf{STUVWXYZ} \!";i:1;s:137:"\mathsf{STUVWXYZ} \!";}i:244;a:2:{i:0;s:25:"\mathsf{abcdefghijklm} \!";i:1;s:142:"\mathsf{abcdefghijklm} \!";}i:245;a:2:{i:0;s:25:"\mathsf{nopqrstuvwxyz} \!";i:1;s:142:"\mathsf{nopqrstuvwxyz} \!";}i:246;a:2:{i:0;s:22:"\mathsf{0123456789} \!";i:1;s:139:"\mathsf{0123456789} \!";}i:247;a:2:{i:0;s:65:"\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \!";i:1;s:182:"\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} \!";}i:248;a:2:{i:0;s:53:"\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} \!";i:1;s:170:"\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} \!";}i:249;a:2:{i:0;s:53:"\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\!";i:1;s:170:"\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}\!";}i:250;a:2:{i:0;s:22:"\mathcal{ABCDEFGHI} \!";i:1;s:139:"\mathcal{ABCDEFGHI} \!";}i:251;a:2:{i:0;s:22:"\mathcal{JKLMNOPQR} \!";i:1;s:139:"\mathcal{JKLMNOPQR} \!";}i:252;a:2:{i:0;s:21:"\mathcal{STUVWXYZ} \!";i:1;s:138:"\mathcal{STUVWXYZ} \!";}i:253;a:2:{i:0;s:23:"\mathfrak{ABCDEFGHI} \!";i:1;s:140:"\mathfrak{ABCDEFGHI} \!";}i:254;a:2:{i:0;s:23:"\mathfrak{JKLMNOPQR} \!";i:1;s:140:"\mathfrak{JKLMNOPQR} \!";}i:255;a:2:{i:0;s:22:"\mathfrak{STUVWXYZ} \!";i:1;s:139:"\mathfrak{STUVWXYZ} \!";}i:256;a:2:{i:0;s:27:"\mathfrak{abcdefghijklm} \!";i:1;s:144:"\mathfrak{abcdefghijklm} \!";}i:257;a:2:{i:0;s:27:"\mathfrak{nopqrstuvwxyz} \!";i:1;s:144:"\mathfrak{nopqrstuvwxyz} \!";}i:258;a:2:{i:0;s:24:"\mathfrak{0123456789} \!";i:1;s:141:"\mathfrak{0123456789} \!";}i:259;a:2:{i:0;s:5:"x y z";i:1;s:122:"x y z";}i:260;a:2:{i:0;s:12:"\text{x y z}";i:1;s:129:"\text{x y z}";}i:261;a:2:{i:0;s:26:"\text{if} n \text{is even}";i:1;s:143:"\text{if} n \text{is even}";}i:262;a:2:{i:0;s:26:"\text{if }n\text{ is even}";i:1;s:143:"\text{if }n\text{ is even}";}i:263;a:2:{i:0;s:27:"\text{if}~n\ \text{is even}";i:1;s:144:"\text{if}~n\ \text{is even}";}i:264;a:2:{i:0;s:64:"{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}";i:1;s:181:"{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}";}i:265;a:2:{i:0;s:49:"x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}";i:1;s:166:"x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}";}i:266;a:2:{i:0;s:17:"e^{i \pi} + 1 = 0";i:1;s:134:"e^{i \pi} + 1 = 0";}i:267;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";}i:268;a:2:{i:0;s:21:"e^{i \pi} + 1 = 0\,\!";i:1;s:138:"e^{i \pi} + 1 = 0\,\!";}i:269;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";}i:270;a:2:{i:0;s:17:"e^{i \pi} + 1 = 0";i:1;s:134:"e^{i \pi} + 1 = 0";}i:271;a:2:{i:0;s:71:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";i:1;s:188:"\definecolor{orange}{RGB}{255,165,0}\pagecolor{orange}e^{i \pi} + 1 = 0";}i:272;a:2:{i:0;s:29:"\color{Apricot}\text{Apricot}";i:1;s:146:"\color{Apricot}\text{Apricot}";}i:273;a:2:{i:0;s:35:"\color{Aquamarine}\text{Aquamarine}";i:1;s:152:"\color{Aquamarine}\text{Aquamarine}";}i:274;a:2:{i:0;s:37:"\color{Bittersweet}\text{Bittersweet}";i:1;s:154:"\color{Bittersweet}\text{Bittersweet}";}i:275;a:2:{i:0;s:25:"\color{Black}\text{Black}";i:1;s:142:"\color{Black}\text{Black}";}i:276;a:2:{i:0;s:23:"\color{Blue}\text{Blue}";i:1;s:140:"\color{Blue}\text{Blue}";}i:277;a:2:{i:0;s:33:"\color{BlueGreen}\text{BlueGreen}";i:1;s:150:"\color{BlueGreen}\text{BlueGreen}";}i:278;a:2:{i:0;s:35:"\color{BlueViolet}\text{BlueViolet}";i:1;s:152:"\color{BlueViolet}\text{BlueViolet}";}i:279;a:2:{i:0;s:31:"\color{BrickRed}\text{BrickRed}";i:1;s:148:"\color{BrickRed}\text{BrickRed}";}i:280;a:2:{i:0;s:25:"\color{Brown}\text{Brown}";i:1;s:142:"\color{Brown}\text{Brown}";}i:281;a:2:{i:0;s:37:"\color{BurntOrange}\text{BurntOrange}";i:1;s:154:"\color{BurntOrange}\text{BurntOrange}";}i:282;a:2:{i:0;s:33:"\color{CadetBlue}\text{CadetBlue}";i:1;s:150:"\color{CadetBlue}\text{CadetBlue}";}i:283;a:2:{i:0;s:41:"\color{CarnationPink}\text{CarnationPink}";i:1;s:158:"\color{CarnationPink}\text{CarnationPink}";}i:284;a:2:{i:0;s:31:"\color{Cerulean}\text{Cerulean}";i:1;s:148:"\color{Cerulean}\text{Cerulean}";}i:285;a:2:{i:0;s:43:"\color{CornflowerBlue}\text{CornflowerBlue}";i:1;s:160:"\color{CornflowerBlue}\text{CornflowerBlue}";}i:286;a:2:{i:0;s:23:"\color{Cyan}\text{Cyan}";i:1;s:140:"\color{Cyan}\text{Cyan}";}i:287;a:2:{i:0;s:33:"\color{Dandelion}\text{Dandelion}";i:1;s:150:"\color{Dandelion}\text{Dandelion}";}i:288;a:2:{i:0;s:35:"\color{DarkOrchid}\text{DarkOrchid}";i:1;s:152:"\color{DarkOrchid}\text{DarkOrchid}";}i:289;a:2:{i:0;s:29:"\color{Emerald}\text{Emerald}";i:1;s:146:"\color{Emerald}\text{Emerald}";}i:290;a:2:{i:0;s:37:"\color{ForestGreen}\text{ForestGreen}";i:1;s:154:"\color{ForestGreen}\text{ForestGreen}";}i:291;a:2:{i:0;s:29:"\color{Fuchsia}\text{Fuchsia}";i:1;s:146:"\color{Fuchsia}\text{Fuchsia}";}i:292;a:2:{i:0;s:33:"\color{Goldenrod}\text{Goldenrod}";i:1;s:150:"\color{Goldenrod}\text{Goldenrod}";}i:293;a:2:{i:0;s:23:"\color{Gray}\text{Gray}";i:1;s:140:"\color{Gray}\text{Gray}";}i:294;a:2:{i:0;s:25:"\color{Green}\text{Green}";i:1;s:142:"\color{Green}\text{Green}";}i:295;a:2:{i:0;s:37:"\color{GreenYellow}\text{GreenYellow}";i:1;s:154:"\color{GreenYellow}\text{GreenYellow}";}i:296;a:2:{i:0;s:37:"\color{JungleGreen}\text{JungleGreen}";i:1;s:154:"\color{JungleGreen}\text{JungleGreen}";}i:297;a:2:{i:0;s:31:"\color{Lavender}\text{Lavender}";i:1;s:148:"\color{Lavender}\text{Lavender}";}i:298;a:2:{i:0;s:33:"\color{LimeGreen}\text{LimeGreen}";i:1;s:150:"\color{LimeGreen}\text{LimeGreen}";}i:299;a:2:{i:0;s:29:"\color{Magenta}\text{Magenta}";i:1;s:146:"\color{Magenta}\text{Magenta}";}i:300;a:2:{i:0;s:31:"\color{Mahogany}\text{Mahogany}";i:1;s:148:"\color{Mahogany}\text{Mahogany}";}i:301;a:2:{i:0;s:27:"\color{Maroon}\text{Maroon}";i:1;s:144:"\color{Maroon}\text{Maroon}";}i:302;a:2:{i:0;s:25:"\color{Melon}\text{Melon}";i:1;s:142:"\color{Melon}\text{Melon}";}i:303;a:2:{i:0;s:39:"\color{MidnightBlue}\text{MidnightBlue}";i:1;s:156:"\color{MidnightBlue}\text{MidnightBlue}";}i:304;a:2:{i:0;s:31:"\color{Mulberry}\text{Mulberry}";i:1;s:148:"\color{Mulberry}\text{Mulberry}";}i:305;a:2:{i:0;s:31:"\color{NavyBlue}\text{NavyBlue}";i:1;s:148:"\color{NavyBlue}\text{NavyBlue}";}i:306;a:2:{i:0;s:35:"\color{OliveGreen}\text{OliveGreen}";i:1;s:152:"\color{OliveGreen}\text{OliveGreen}";}i:307;a:2:{i:0;s:27:"\color{Orange}\text{Orange}";i:1;s:144:"\color{Orange}\text{Orange}";}i:308;a:2:{i:0;s:33:"\color{OrangeRed}\text{OrangeRed}";i:1;s:150:"\color{OrangeRed}\text{OrangeRed}";}i:309;a:2:{i:0;s:27:"\color{Orchid}\text{Orchid}";i:1;s:144:"\color{Orchid}\text{Orchid}";}i:310;a:2:{i:0;s:25:"\color{Peach}\text{Peach}";i:1;s:142:"\color{Peach}\text{Peach}";}i:311;a:2:{i:0;s:35:"\color{Periwinkle}\text{Periwinkle}";i:1;s:152:"\color{Periwinkle}\text{Periwinkle}";}i:312;a:2:{i:0;s:33:"\color{PineGreen}\text{PineGreen}";i:1;s:150:"\color{PineGreen}\text{PineGreen}";}i:313;a:2:{i:0;s:23:"\color{Plum}\text{Plum}";i:1;s:140:"\color{Plum}\text{Plum}";}i:314;a:2:{i:0;s:37:"\color{ProcessBlue}\text{ProcessBlue}";i:1;s:154:"\color{ProcessBlue}\text{ProcessBlue}";}i:315;a:2:{i:0;s:27:"\color{Purple}\text{Purple}";i:1;s:144:"\color{Purple}\text{Purple}";}i:316;a:2:{i:0;s:33:"\color{RawSienna}\text{RawSienna}";i:1;s:150:"\color{RawSienna}\text{RawSienna}";}i:317;a:2:{i:0;s:21:"\color{Red}\text{Red}";i:1;s:138:"\color{Red}\text{Red}";}i:318;a:2:{i:0;s:33:"\color{RedOrange}\text{RedOrange}";i:1;s:150:"\color{RedOrange}\text{RedOrange}";}i:319;a:2:{i:0;s:33:"\color{RedViolet}\text{RedViolet}";i:1;s:150:"\color{RedViolet}\text{RedViolet}";}i:320;a:2:{i:0;s:33:"\color{Rhodamine}\text{Rhodamine}";i:1;s:150:"\color{Rhodamine}\text{Rhodamine}";}i:321;a:2:{i:0;s:33:"\color{RoyalBlue}\text{RoyalBlue}";i:1;s:150:"\color{RoyalBlue}\text{RoyalBlue}";}i:322;a:2:{i:0;s:37:"\color{RoyalPurple}\text{RoyalPurple}";i:1;s:154:"\color{RoyalPurple}\text{RoyalPurple}";}i:323;a:2:{i:0;s:33:"\color{RubineRed}\text{RubineRed}";i:1;s:150:"\color{RubineRed}\text{RubineRed}";}i:324;a:2:{i:0;s:27:"\color{Salmon}\text{Salmon}";i:1;s:144:"\color{Salmon}\text{Salmon}";}i:325;a:2:{i:0;s:31:"\color{SeaGreen}\text{SeaGreen}";i:1;s:148:"\color{SeaGreen}\text{SeaGreen}";}i:326;a:2:{i:0;s:25:"\color{Sepia}\text{Sepia}";i:1;s:142:"\color{Sepia}\text{Sepia}";}i:327;a:2:{i:0;s:29:"\color{SkyBlue}\text{SkyBlue}";i:1;s:146:"\color{SkyBlue}\text{SkyBlue}";}i:328;a:2:{i:0;s:37:"\color{SpringGreen}\text{SpringGreen}";i:1;s:154:"\color{SpringGreen}\text{SpringGreen}";}i:329;a:2:{i:0;s:21:"\color{Tan}\text{Tan}";i:1;s:138:"\color{Tan}\text{Tan}";}i:330;a:2:{i:0;s:31:"\color{TealBlue}\text{TealBlue}";i:1;s:148:"\color{TealBlue}\text{TealBlue}";}i:331;a:2:{i:0;s:29:"\color{Thistle}\text{Thistle}";i:1;s:146:"\color{Thistle}\text{Thistle}";}i:332;a:2:{i:0;s:33:"\color{Turquoise}\text{Turquoise}";i:1;s:150:"\color{Turquoise}\text{Turquoise}";}i:333;a:2:{i:0;s:27:"\color{Violet}\text{Violet}";i:1;s:144:"\color{Violet}\text{Violet}";}i:334;a:2:{i:0;s:33:"\color{VioletRed}\text{VioletRed}";i:1;s:150:"\color{VioletRed}\text{VioletRed}";}i:335;a:2:{i:0;s:43:"\color{WildStrawberry}\text{WildStrawberry}";i:1;s:160:"\color{WildStrawberry}\text{WildStrawberry}";}i:336;a:2:{i:0;s:37:"\color{YellowGreen}\text{YellowGreen}";i:1;s:154:"\color{YellowGreen}\text{YellowGreen}";}i:337;a:2:{i:0;s:39:"\color{YellowOrange}\text{YellowOrange}";i:1;s:156:"\color{YellowOrange}\text{YellowOrange}";}i:338;a:2:{i:0;s:10:"a \qquad b";i:1;s:127:"a \qquad b";}i:339;a:2:{i:0;s:9:"a \quad b";i:1;s:126:"a \quad b";}i:340;a:2:{i:0;s:4:"a\ b";i:1;s:121:"a\ b";}i:341;a:2:{i:0;s:12:"a \mbox{ } b";i:1;s:129:"a \mbox{ } b";}i:342;a:2:{i:0;s:4:"a\;b";i:1;s:121:"a\;b";}i:343;a:2:{i:0;s:4:"a\,b";i:1;s:121:"a\,b";}i:344;a:2:{i:0;s:2:"ab";i:1;s:119:"ab";}i:345;a:2:{i:0;s:11:"\mathit{ab}";i:1;s:128:"\mathit{ab}";}i:346;a:2:{i:0;s:4:"a\!b";i:1;s:121:"a\!b";}i:347;a:2:{i:0;s:59:"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots";i:1;s:176:"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots";}i:348;a:2:{i:0;s:61:"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}";i:1;s:178:"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}";}i:349;a:2:{i:0;s:22:"\int_{-N}^{N} e^x\, dx";i:1;s:139:"\int_{-N}^{N} e^x\, dx";}i:350;a:2:{i:0;s:24:"\sum_{i=0}^\infty 2^{-i}";i:1;s:141:"\sum_{i=0}^\infty 2^{-i}";}i:351;a:2:{i:0;s:57:"\text{geometric series:}\quad \sum_{i=0}^\infty 2^{-i}=2 ";i:1;s:174:"\text{geometric series:}\quad \sum_{i=0}^\infty 2^{-i}=2 ";}i:352;a:2:{i:0;s:5:"\iint";i:1;s:122:"\iint";}i:353;a:2:{i:0;s:5:"\oint";i:1;s:122:"\oint";}i:354;a:2:{i:0;s:90:"\iint\limits_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset \mathbf D \cdot \mathrm{d}\mathbf A";i:1;s:207:"\iint\limits_{S}\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset \mathbf D \cdot \mathrm{d}\mathbf A";}i:355;a:2:{i:0;s:114:"\int\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\cdot\mathrm{d}\mathbf A";i:1;s:231:"\int\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\cdot\mathrm{d}\mathbf A";}i:356;a:2:{i:0;s:139:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf D\cdot\mathrm{d}\mathbf A";i:1;s:256:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\subset\!\supset \mathbf D\cdot\mathrm{d}\mathbf A";}i:357;a:2:{i:0;s:132:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\;\cdot\mathrm{d}\mathbf A";i:1;s:249:"\int\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\;\;\bigcirc\,\,\mathbf D\;\cdot\mathrm{d}\mathbf A";}i:358;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"{\scriptstyle S}";}i:359;a:2:{i:0;s:110:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";i:1;s:227:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";}i:360;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"{\scriptstyle S}";}i:361;a:2:{i:0;s:110:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";i:1;s:227:"( \nabla \times \bold{F} ) \cdot {\rm d}\bold{S} = \oint_{\partial S} \bold{F} \cdot {\rm d}\boldsymbol{\ell} ";}i:362;a:2:{i:0;s:57:"\oint_C \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";i:1;s:174:"\oint_C \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";}i:363;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"{\scriptstyle S}";}i:364;a:2:{i:0;s:96:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";i:1;s:213:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";}i:365;a:2:{i:0;s:68:"\oint_{\partial S} \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";i:1;s:185:"\oint_{\partial S} \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 ";}i:366;a:2:{i:0;s:16:"{\scriptstyle S}";i:1;s:133:"{\scriptstyle S}";}i:367;a:2:{i:0;s:96:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";i:1;s:213:"\left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right ) \cdot {\rm d}\bold{S}";}i:368;a:2:{i:0;s:11:"\bold{P} = ";i:1;s:128:"\bold{P} = ";}i:369;a:2:{i:0;s:30:"{\scriptstyle \partial \Omega}";i:1;s:147:"{\scriptstyle \partial \Omega}";}i:370;a:2:{i:0;s:47:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";i:1;s:164:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";}i:371;a:2:{i:0;s:11:"\bold{P} = ";i:1;s:128:"\bold{P} = ";}i:372;a:2:{i:0;s:30:"{\scriptstyle \partial \Omega}";i:1;s:147:"{\scriptstyle \partial \Omega}";}i:373;a:2:{i:0;s:47:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";i:1;s:164:"\bold{T} \cdot {\rm d}^3\boldsymbol{\Sigma} = 0";}i:374;a:2:{i:0;s:20:"\overset{\frown}{AB}";i:1;s:137:"\overset{\frown}{AB}";}i:375;a:2:{i:0;s:17:"ax^2 + bx + c = 0";i:1;s:134:"ax^2 + bx + c = 0";}i:376;a:2:{i:0;s:17:"ax^2 + bx + c = 0";i:1;s:134:"ax^2 + bx + c = 0";}i:377;a:2:{i:0;s:32:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";i:1;s:149:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";}i:378;a:2:{i:0;s:32:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";i:1;s:149:"x={-b\pm\sqrt{b^2-4ac} \over 2a}";}i:379;a:2:{i:0;s:56:"2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)";i:1;s:173:"2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)";}i:380;a:2:{i:0;s:56:"2 = \left( -\frac{\left(3-x\right) \times 2}{3-x} -\right)";i:1;s:181:"2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)";}i:381;a:2:{i:0;s:67:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";i:1;s:184:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";}i:382;a:2:{i:0;s:67:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";i:1;s:184:"S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}";}i:383;a:2:{i:0;s:61:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy";i:1;s:178:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy";}i:384;a:2:{i:0;s:61:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds -= \int_a^x f(y)(x-y)\,dy";i:1;s:182:"\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy";}i:385;a:2:{i:0;s:38:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";i:1;s:155:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";}i:386;a:2:{i:0;s:38:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";i:1;s:155:"\det(\mathsf{A}-\lambda\mathsf{I}) = 0";}i:387;a:2:{i:0;s:18:"\sum_{i=0}^{n-1} i";i:1;s:135:"\sum_{i=0}^{n-1} i";}i:388;a:2:{i:0;s:18:"\sum_{i=0}^{n-1} i";i:1;s:135:"\sum_{i=0}^{n-1} i";}i:389;a:2:{i:0;s:78:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}";i:1;s:195:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}";}i:390;a:2:{i:0;s:79:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} -{3^m\left(m\,3^n+n\,3^m\right)}";i:1;s:200:"\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}";}i:391;a:2:{i:0;s:35:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";i:1;s:170:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";}i:392;a:2:{i:0;s:35:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";i:1;s:170:"u'' + p(x)u' + q(x)u=f(x),\quad x>a";}i:393;a:2:{i:0;s:61:"|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)";i:1;s:178:"|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)";}i:394;a:2:{i:0;s:61:"|\bar{z}| = |z|, -|(\bar{z})^n| = |z|^n, -\arg(z^n) = n \arg(z)";i:1;s:186:"|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)";}i:395;a:2:{i:0;s:35:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";i:1;s:152:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";}i:396;a:2:{i:0;s:35:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";i:1;s:152:"\lim_{z\rightarrow z_0} f(z)=f(z_0)";}i:397;a:2:{i:0;s:170:"\phi_n(\kappa) -= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";i:1;s:291:"\phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";}i:398;a:2:{i:0;s:170:"\phi_n(\kappa) = -\frac{1}{4\pi^2\kappa^2} \int_0^\infty -\frac{\sin(\kappa R)}{\kappa R} -\frac{\partial}{\partial R} -\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";i:1;s:303:"\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR";}i:399;a:2:{i:0;s:86:"\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";i:1;s:203:"\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";}i:400;a:2:{i:0;s:86:"\phi_n(\kappa) = -0.033C_n^2\kappa^{-11/3},\quad -\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";i:1;s:211:"\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}";}i:401;a:2:{i:0;s:100:"f(x) = \begin{cases}1 & -1 \le x < 0 \\ -\frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise}\end{cases}";i:1;s:236:"f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise}\end{cases}";}i:402;a:2:{i:0;s:104:" -f(x) = -\begin{cases} -1 & -1 \le x < 0 \\ -\frac{1}{2} & x = 0 \\ -1 - x^2 & \text{otherwise} -\end{cases} -";i:1;s:264:"
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases}
";}i:403;a:2:{i:0;s:122:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}";i:1;s:239:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}";}i:404;a:2:{i:0;s:123:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) -= \sum_{n=0}^\infty -\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} -\frac{z^n}{n!}";i:1;s:252:"{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!}";}i:405;a:2:{i:0;s:25:"\frac{a}{b}\ \tfrac{a}{b}";i:1;s:142:"\frac{a}{b}\ \tfrac{a}{b}";}i:406;a:2:{i:0;s:25:"\frac{a}{b}\ \tfrac{a}{b}";i:1;s:142:"\frac{a}{b}\ \tfrac{a}{b}";}i:407;a:2:{i:0;s:18:"S=dD\,\sin\alpha\!";i:1;s:135:"S=dD\,\sin\alpha\!";}i:408;a:2:{i:0;s:18:"S=dD\,\sin\alpha\!";i:1;s:135:"S=dD\,\sin\alpha\!";}i:409;a:2:{i:0;s:56:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";i:1;s:173:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";}i:410;a:2:{i:0;s:56:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";i:1;s:173:"V=\frac16\pi h\left[3\left(r_1^2+r_2^2\right)+h^2\right]";}i:411;a:2:{i:0;s:167:"\begin{align} -u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v)\\ -v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v) -\end{align}";i:1;s:320:"\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v)\\
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align}";}i:412;a:2:{i:0;s:168:"\begin{align} -u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\ -v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v) -\end{align}";i:1;s:321:"\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align}";}i:413;a:2:{i:0;s:172:" with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|2+2";i:1;s:259:"Failed to parse (syntax error): with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped &lt;math&gt; tags. [[Image:foobar.jpg|thumb|<math>2+2 -";}i:414;a:2:{i:0;s:66:" with a thumbnail- math enabled [[Image:foobar.jpg|thumb|2+2";i:1;s:189:" with a thumbnail- math enabled [[Image:foobar.jpg|thumb|<math>2+2";}i:415;a:2:{i:0;s:41:"";i:1;s:170:"<script>alert(document.cookies);</script>";}i:416;a:2:{i:0;s:11:"\widehat{x}";i:1;s:128:"\widehat{x}";}i:417;a:2:{i:0;s:13:"\widetilde{x}";i:1;s:130:"\widetilde{x}";}i:418;a:2:{i:0;s:9:"\euro 200";i:1;s:126:"\euro 200";}i:419;a:2:{i:0;s:8:"\geneuro";i:1;s:125:"\geneuro";}i:420;a:2:{i:0;s:14:"\geneuronarrow";i:1;s:131:"\geneuronarrow";}i:421;a:2:{i:0;s:12:"\geneurowide";i:1;s:129:"\geneurowide";}i:422;a:2:{i:0;s:13:"\officialeuro";i:1;s:130:"\officialeuro";}i:423;a:2:{i:0;s:8:"\digamma";i:1;s:125:"\digamma";}i:424;a:2:{i:0;s:21:"\Coppa\coppa\varcoppa";i:1;s:138:"\Coppa\coppa\varcoppa";}i:425;a:2:{i:0;s:8:"\Digamma";i:1;s:125:"\Digamma";}i:426;a:2:{i:0;s:12:"\Koppa\koppa";i:1;s:129:"\Koppa\koppa";}i:427;a:2:{i:0;s:12:"\Sampi\sampi";i:1;s:129:"\Sampi\sampi";}i:428;a:2:{i:0;s:24:"\Stigma\stigma\varstigma";i:1;s:141:"\Stigma\stigma\varstigma";}i:429;a:2:{i:0;s:17:"\text{next years}";i:1;s:134:"\text{next years}";}i:430;a:2:{i:0;s:18:"\text{next year's}";i:1;s:140:"\text{next year's}";}i:431;a:2:{i:0;s:18:"\text{`next' year}";i:1;s:140:"\text{`next' year}";}i:432;a:2:{i:0;s:6:"\sin x";i:1;s:123:"\sin x";}i:433;a:2:{i:0;s:7:"\sin(x)";i:1;s:124:"\sin(x)";}i:434;a:2:{i:0;s:7:"\sin{x}";i:1;s:124:"\sin{x}";}i:435;a:2:{i:0;s:9:"\sin x \,";i:1;s:126:"\sin x \,";}i:436;a:2:{i:0;s:10:"\sin(x) \,";i:1;s:127:"\sin(x) \,";}i:437;a:2:{i:0;s:10:"\sin{x} \,";i:1;s:127:"\sin{x} \,";}i:438;a:2:{i:0;s:6:"\sen x";i:1;s:123:"\sen x";}i:439;a:2:{i:0;s:7:"\sen(x)";i:1;s:124:"\sen(x)";}i:440;a:2:{i:0;s:7:"\sen{x}";i:1;s:124:"\sen{x}";}i:441;a:2:{i:0;s:9:"\sen x \,";i:1;s:126:"\sen x \,";}i:442;a:2:{i:0;s:10:"\sen(x) \,";i:1;s:127:"\sen(x) \,";}i:443;a:2:{i:0;s:10:"\sen{x} \,";i:1;s:127:"\sen{x} \,";}i:444;a:2:{i:0;s:18:"\operatorname{sen}";i:1;s:135:"\operatorname{sen}";}i:445;a:2:{i:0;s:11:"\dot \vec B";i:1;s:128:"\dot \vec B";}i:446;a:2:{i:0;s:18:"\tilde \mathcal{M}";i:1;s:135:"\tilde \mathcal{M}";}i:447;a:2:{i:0;s:0:"";i:1;s:160:"Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): -";}i:448;a:2:{i:0;s:1:" ";i:1;s:161:"Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): -";}} \ No newline at end of file diff --git a/tests/ParserTest.json b/tests/ParserTest.json new file mode 100644 index 000000000..172ce4c10 --- /dev/null +++ b/tests/ParserTest.json @@ -0,0 +1,1798 @@ +[ + [ + "e^{i \\pi} + 1 = 0\\,\\!", + "\"e^{i" + ], + [ + "e^{i \\pi} + 1 = 0\\,\\!", + "\"e^{i" + ], + [ + "\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i \\pi} + 1 = 0\\,\\!", + "\"\\definecolor{red}{RGB}{255,0,0}\\pagecolor{red}e^{i" + ], + [ + "\\text{abc}", + "\"\\text{abc}\"" + ], + [ + "\\alpha\\,\\!", + "\"\\alpha\\,\\!\"" + ], + [ + " f(x) = x^2\\,\\!", + "\"" + ], + [ + "\\sqrt{2}", + "\"\\sqrt{2}\"" + ], + [ + "\\sqrt{1-e^2}\\!", + "\"\\sqrt{1-e^2}\\!\"" + ], + [ + "\\sqrt{1-z^3}\\!", + "\"\\sqrt{1-z^3}\\!\"" + ], + [ + "x", + "\"x\"" + ], + [ + "\\dot{a}, \\ddot{a}, \\acute{a}, \\grave{a} \\!", + "\"\\dot{a}," + ], + [ + "\\check{a}, \\breve{a}, \\tilde{a}, \\bar{a} \\!", + "\"\\check{a}," + ], + [ + "\\hat{a}, \\widehat{a}, \\vec{a} \\!", + "\"\\hat{a}," + ], + [ + "\\exp_a b = a^b, \\exp b = e^b, 10^m \\!", + "\"\\exp_a" + ], + [ + "\\ln c, \\lg d = \\log e, \\log_{10} f \\!", + "\"\\ln" + ], + [ + "\\sin a, \\cos b, \\tan c, \\cot d, \\sec e, \\csc f\\!", + "\"\\sin" + ], + [ + "\\arcsin h, \\arccos i, \\arctan j \\!", + "\"\\arcsin" + ], + [ + "\\sinh k, \\cosh l, \\tanh m, \\coth n \\!", + "\"\\sinh" + ], + [ + "\\operatorname{sh}\\,k, \\operatorname{ch}\\,l, \\operatorname{th}\\,m, \\operatorname{coth}\\,n \\!", + "\"\\operatorname{sh}\\,k," + ], + [ + "\\operatorname{argsh}\\,o, \\operatorname{argch}\\,p, \\operatorname{argth}\\,q \\!", + "\"\\operatorname{argsh}\\,o," + ], + [ + "\\sgn r, \\left\\vert s \\right\\vert \\!", + "\"\\sgn" + ], + [ + "\\min(x,y), \\max(x,y) \\!", + "\"\\min(x,y)," + ], + [ + "\\min x, \\max y, \\inf s, \\sup t \\!", + "\"\\min" + ], + [ + "\\lim u, \\liminf v, \\limsup w \\!", + "\"\\lim" + ], + [ + "\\dim p, \\deg q, \\det m, \\ker\\phi \\!", + "\"\\dim" + ], + [ + "\\Pr j, \\hom l, \\lVert z \\rVert, \\arg z \\!", + "\"\\Pr" + ], + [ + "dt, \\operatorname{d}\\!t, \\partial t, \\nabla\\psi\\!", + "\"dt," + ], + [ + "dy\/dx, \\operatorname{d}\\!y\/\\operatorname{d}\\!x, {dy \\over dx}, {\\operatorname{d}\\!y\\over\\operatorname{d}\\!x}, {\\partial^2\\over\\partial x_1\\partial x_2}y \\!", + "\"dy\/dx," + ], + [ + "\\prime, \\backprime, f^\\prime, f', f'', f^{(3)} \\!, \\dot y, \\ddot y", + "\"\\prime," + ], + [ + "\\infty, \\aleph, \\complement, \\backepsilon, \\eth, \\Finv, \\hbar \\!", + "\"\\infty," + ], + [ + "\\Im, \\imath, \\jmath, \\Bbbk, \\ell, \\mho, \\wp, \\Re, \\circledS \\!", + "\"\\Im," + ], + [ + "s_k \\equiv 0 \\pmod{m} \\!", + "\"s_k" + ], + [ + "a\\,\\bmod\\,b \\!", + "\"a\\,\\bmod\\,b" + ], + [ + "\\gcd(m, n), \\operatorname{lcm}(m, n)", + "\"\\gcd(m," + ], + [ + "\\mid, \\nmid, \\shortmid, \\nshortmid \\!", + "\"\\mid," + ], + [ + "\\surd, \\sqrt{2}, \\sqrt[n]{}, \\sqrt[3]{x^3+y^3 \\over 2} \\!", + "\"\\surd," + ], + [ + "+, -, \\pm, \\mp, \\dotplus \\!", + "\"+," + ], + [ + "\\times, \\div, \\divideontimes, \/, \\backslash \\!", + "\"\\times," + ], + [ + "\\cdot, * \\ast, \\star, \\circ, \\bullet \\!", + "\"\\cdot," + ], + [ + "\\boxplus, \\boxminus, \\boxtimes, \\boxdot \\!", + "\"\\boxplus," + ], + [ + "\\oplus, \\ominus, \\otimes, \\oslash, \\odot\\!", + "\"\\oplus," + ], + [ + "\\circleddash, \\circledcirc, \\circledast \\!", + "\"\\circleddash," + ], + [ + "\\bigoplus, \\bigotimes, \\bigodot \\!", + "\"\\bigoplus," + ], + [ + "\\{ \\}, \\O \\empty \\emptyset, \\varnothing \\!", + "\"\\{" + ], + [ + "\\in, \\notin \\not\\in, \\ni, \\not\\ni \\!", + "\"\\in," + ], + [ + "\\cap, \\Cap, \\sqcap, \\bigcap \\!", + "\"\\cap," + ], + [ + "\\cup, \\Cup, \\sqcup, \\bigcup, \\bigsqcup, \\uplus, \\biguplus \\!", + "\"\\cup," + ], + [ + "\\setminus, \\smallsetminus, \\times \\!", + "\"\\setminus," + ], + [ + "\\subset, \\Subset, \\sqsubset \\!", + "\"\\subset," + ], + [ + "\\supset, \\Supset, \\sqsupset \\!", + "\"\\supset," + ], + [ + "\\subseteq, \\nsubseteq, \\subsetneq, \\varsubsetneq, \\sqsubseteq \\!", + "\"\\subseteq," + ], + [ + "\\supseteq, \\nsupseteq, \\supsetneq, \\varsupsetneq, \\sqsupseteq \\!", + "\"\\supseteq," + ], + [ + "\\subseteqq, \\nsubseteqq, \\subsetneqq, \\varsubsetneqq \\!", + "\"\\subseteqq," + ], + [ + "\\supseteqq, \\nsupseteqq, \\supsetneqq, \\varsupsetneqq \\!", + "\"\\supseteqq," + ], + [ + "=, \\ne, \\neq, \\equiv, \\not\\equiv \\!", + "\"=," + ], + [ + "\\doteq, \\doteqdot, \\overset{\\underset{\\mathrm{def}}{}}{=}, := \\!", + "\"\\doteq," + ], + [ + "\\sim, \\nsim, \\backsim, \\thicksim, \\simeq, \\backsimeq, \\eqsim, \\cong, \\ncong \\!", + "\"\\sim," + ], + [ + "\\approx, \\thickapprox, \\approxeq, \\asymp, \\propto, \\varpropto \\!", + "\"\\approx," + ], + [ + "<, \\nless, \\ll, \\not\\ll, \\lll, \\not\\lll, \\lessdot \\!", + "\"<," + ], + [ + ">, \\ngtr, \\gg, \\not\\gg, \\ggg, \\not\\ggg, \\gtrdot \\!", + "\">," + ], + [ + "\\le \\leq, \\lneq, \\leqq, \\nleqq, \\lneqq, \\lvertneqq \\!", + "\"\\le" + ], + [ + "\\ge \\geq, \\gneq, \\geqq, \\ngeqq, \\gneqq, \\gvertneqq \\!", + "\"\\ge" + ], + [ + "\\lessgtr \\lesseqgtr \\lesseqqgtr \\gtrless \\gtreqless \\gtreqqless \\!", + "\"\\lessgtr" + ], + [ + "\\leqslant, \\nleqslant, \\eqslantless \\!", + "\"\\leqslant," + ], + [ + "\\geqslant, \\ngeqslant, \\eqslantgtr \\!", + "\"\\geqslant," + ], + [ + "\\lesssim, \\lnsim, \\lessapprox, \\lnapprox \\!", + "\"\\lesssim," + ], + [ + " \\gtrsim, \\gnsim, \\gtrapprox, \\gnapprox \\,", + "\"" + ], + [ + "\\prec, \\nprec, \\preceq, \\npreceq, \\precneqq \\!", + "\"\\prec," + ], + [ + "\\succ, \\nsucc, \\succeq, \\nsucceq, \\succneqq \\!", + "\"\\succ," + ], + [ + "\\preccurlyeq, \\curlyeqprec \\,", + "\"\\preccurlyeq," + ], + [ + "\\succcurlyeq, \\curlyeqsucc \\,", + "\"\\succcurlyeq," + ], + [ + "\\precsim, \\precnsim, \\precapprox, \\precnapprox \\,", + "\"\\precsim," + ], + [ + "\\succsim, \\succnsim, \\succapprox, \\succnapprox \\,", + "\"\\succsim," + ], + [ + "\\parallel, \\nparallel, \\shortparallel, \\nshortparallel \\!", + "\"\\parallel," + ], + [ + "\\perp, \\angle, \\sphericalangle, \\measuredangle, 45^\\circ \\!", + "\"\\perp," + ], + [ + "\\Box, \\blacksquare, \\diamond, \\Diamond \\lozenge, \\blacklozenge, \\bigstar \\!", + "\"\\Box," + ], + [ + "\\bigcirc, \\triangle \\bigtriangleup, \\bigtriangledown \\!", + "\"\\bigcirc," + ], + [ + "\\vartriangle, \\triangledown\\!", + "\"\\vartriangle," + ], + [ + "\\blacktriangle, \\blacktriangledown, \\blacktriangleleft, \\blacktriangleright \\!", + "\"\\blacktriangle," + ], + [ + "\\forall, \\exists, \\nexists \\!", + "\"\\forall," + ], + [ + "\\therefore, \\because, \\And \\!", + "\"\\therefore," + ], + [ + "\\or \\lor \\vee, \\curlyvee, \\bigvee \\!", + "\"\\or" + ], + [ + "\\and \\land \\wedge, \\curlywedge, \\bigwedge \\!", + "\"\\and" + ], + [ + "\\bar{q}, \\bar{abc}, \\overline{q}, \\overline{abc}, \\!", + "\"\\bar{q}," + ], + [ + "\\lnot \\neg, \\not\\operatorname{R}, \\bot, \\top \\!", + "\"\\lnot" + ], + [ + "\\vdash \\dashv, \\vDash, \\Vdash, \\models \\!", + "\"\\vdash" + ], + [ + "\\Vvdash \\nvdash \\nVdash \\nvDash \\nVDash \\!", + "\"\\Vvdash" + ], + [ + "\\ulcorner \\urcorner \\llcorner \\lrcorner \\,", + "\"\\ulcorner" + ], + [ + "\\Rrightarrow, \\Lleftarrow \\!", + "\"\\Rrightarrow," + ], + [ + "\\Rightarrow, \\nRightarrow, \\Longrightarrow \\implies\\!", + "\"\\Rightarrow," + ], + [ + "\\Leftarrow, \\nLeftarrow, \\Longleftarrow \\!", + "\"\\Leftarrow," + ], + [ + "\\Leftrightarrow, \\nLeftrightarrow, \\Longleftrightarrow \\iff \\!", + "\"\\Leftrightarrow," + ], + [ + "\\Uparrow, \\Downarrow, \\Updownarrow \\!", + "\"\\Uparrow," + ], + [ + "\\rightarrow \\to, \\nrightarrow, \\longrightarrow\\!", + "\"\\rightarrow" + ], + [ + "\\leftarrow \\gets, \\nleftarrow, \\longleftarrow\\!", + "\"\\leftarrow" + ], + [ + "\\leftrightarrow, \\nleftrightarrow, \\longleftrightarrow \\!", + "\"\\leftrightarrow," + ], + [ + "\\uparrow, \\downarrow, \\updownarrow \\!", + "\"\\uparrow," + ], + [ + "\\nearrow, \\swarrow, \\nwarrow, \\searrow \\!", + "\"\\nearrow," + ], + [ + "\\mapsto, \\longmapsto \\!", + "\"\\mapsto," + ], + [ + "\\rightharpoonup \\rightharpoondown \\leftharpoonup \\leftharpoondown \\upharpoonleft \\upharpoonright \\downharpoonleft \\downharpoonright \\rightleftharpoons \\leftrightharpoons \\,\\!", + "\"\\rightharpoonup" + ], + [ + "\\curvearrowleft \\circlearrowleft \\Lsh \\upuparrows \\rightrightarrows \\rightleftarrows \\rightarrowtail \\looparrowright \\,\\!", + "\"\\curvearrowleft" + ], + [ + "\\curvearrowright \\circlearrowright \\Rsh \\downdownarrows \\leftleftarrows \\leftrightarrows \\leftarrowtail \\looparrowleft \\,\\!", + "\"\\curvearrowright" + ], + [ + "\\hookrightarrow \\hookleftarrow \\multimap \\leftrightsquigarrow \\rightsquigarrow \\twoheadrightarrow \\twoheadleftarrow \\!", + "\"\\hookrightarrow" + ], + [ + "\\amalg \\P \\S \\% \\dagger \\ddagger \\ldots \\cdots \\!", + "\"\\amalg" + ], + [ + "\\smile \\frown \\wr \\triangleleft \\triangleright\\!", + "\"\\smile" + ], + [ + "\\diamondsuit, \\heartsuit, \\clubsuit, \\spadesuit, \\Game, \\flat, \\natural, \\sharp \\!", + "\"\\diamondsuit," + ], + [ + "\\diagup \\diagdown \\centerdot \\ltimes \\rtimes \\leftthreetimes \\rightthreetimes \\!", + "\"\\diagup" + ], + [ + "\\eqcirc \\circeq \\triangleq \\bumpeq \\Bumpeq \\doteqdot \\risingdotseq \\fallingdotseq \\!", + "\"\\eqcirc" + ], + [ + "\\intercal \\barwedge \\veebar \\doublebarwedge \\between \\pitchfork \\!", + "\"\\intercal" + ], + [ + "\\vartriangleleft \\ntriangleleft \\vartriangleright \\ntriangleright \\!", + "\"\\vartriangleleft" + ], + [ + "\\trianglelefteq \\ntrianglelefteq \\trianglerighteq \\ntrianglerighteq \\!", + "\"\\trianglelefteq" + ], + [ + "a^2", + "\"a^2\"" + ], + [ + "a_2", + "\"a_2\"" + ], + [ + "10^{30} a^{2+2}", + "\"10^{30}" + ], + [ + "a_{i,j} b_{f'}", + "\"a_{i,j}" + ], + [ + "x_2^3", + "\"x_2^3\"" + ], + [ + "{x_2}^3 \\,\\!", + "\"{x_2}^3" + ], + [ + "10^{10^{8}}", + "\"10^{10^{8}}\"" + ], + [ + "\\sideset{_1^2}{_3^4}\\prod_a^b", + "\"\\sideset{_1^2}{_3^4}\\prod_a^b\"" + ], + [ + "{}_1^2\\!\\Omega_3^4", + "\"{}_1^2\\!\\Omega_3^4\"" + ], + [ + "\\overset{\\alpha}{\\omega}", + "\"\\overset{\\alpha}{\\omega}\"" + ], + [ + "\\underset{\\alpha}{\\omega}", + "\"\\underset{\\alpha}{\\omega}\"" + ], + [ + "\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}", + "\"\\overset{\\alpha}{\\underset{\\gamma}{\\omega}}\"" + ], + [ + "\\stackrel{\\alpha}{\\omega}", + "\"\\stackrel{\\alpha}{\\omega}\"" + ], + [ + "x', y'', f', f''", + "\"x'," + ], + [ + "x^\\prime, y^{\\prime\\prime}", + "\"x^\\prime," + ], + [ + "\\dot{x}, \\ddot{x}", + "\"\\dot{x}," + ], + [ + " \\hat a \\ \\bar b \\ \\vec c", + "\"" + ], + [ + " \\overrightarrow{a b} \\ \\overleftarrow{c d} \\ \\widehat{d e f}", + "\"" + ], + [ + " \\overline{g h i} \\ \\underline{j k l}", + "\"" + ], + [ + "\\overset{\\frown} {AB}", + "\"\\overset{\\frown}" + ], + [ + " A \\xleftarrow{n+\\mu-1} B \\xrightarrow[T]{n\\pm i-1} C", + "\"" + ], + [ + "\\overbrace{ 1+2+\\cdots+100 }^{5050}", + "\"\\overbrace{" + ], + [ + "\\underbrace{ a+b+\\cdots+z }_{26}", + "\"\\underbrace{" + ], + [ + "\\sum_{k=1}^N k^2", + "\"\\sum_{k=1}^N" + ], + [ + "\\textstyle \\sum_{k=1}^N k^2", + "\"\\textstyle" + ], + [ + "\\frac{\\sum_{k=1}^N k^2}{a}", + "\"\\frac{\\sum_{k=1}^N" + ], + [ + "\\frac{\\displaystyle \\sum_{k=1}^N k^2}{a}", + "\"\\frac{\\displaystyle" + ], + [ + "\\frac{\\sum\\limits^{^N}_{k=1} k^2}{a}", + "\"\\frac{\\sum\\limits^{^N}_{k=1}" + ], + [ + "\\prod_{i=1}^N x_i", + "\"\\prod_{i=1}^N" + ], + [ + "\\textstyle \\prod_{i=1}^N x_i", + "\"\\textstyle" + ], + [ + "\\coprod_{i=1}^N x_i", + "\"\\coprod_{i=1}^N" + ], + [ + "\\textstyle \\coprod_{i=1}^N x_i", + "\"\\textstyle" + ], + [ + "\\lim_{n \\to \\infty}x_n", + "\"\\lim_{n" + ], + [ + "\\textstyle \\lim_{n \\to \\infty}x_n", + "\"\\textstyle" + ], + [ + "\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx", + "\"\\int\\limits_{1}^{3}\\frac{e^3\/x}{x^2}\\," + ], + [ + "\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\, dx", + "\"\\int_{1}^{3}\\frac{e^3\/x}{x^2}\\," + ], + [ + "\\textstyle \\int\\limits_{-N}^{N} e^x\\, dx", + "\"\\textstyle" + ], + [ + "\\textstyle \\int_{-N}^{N} e^x\\, dx", + "\"\\textstyle" + ], + [ + "\\iint\\limits_D \\, dx\\,dy", + "\"\\iint\\limits_D" + ], + [ + "\\iiint\\limits_E \\, dx\\,dy\\,dz", + "\"\\iiint\\limits_E" + ], + [ + "\\iiiint\\limits_F \\, dx\\,dy\\,dz\\,dt", + "\"\\iiiint\\limits_F" + ], + [ + "\\int_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy", + "\"\\int_{(x,y)\\in" + ], + [ + "\\oint_{(x,y)\\in C} x^3\\, dx + 4y^2\\, dy", + "\"\\oint_{(x,y)\\in" + ], + [ + "\\bigcap_{i=_1}^n E_i", + "\"\\bigcap_{i=_1}^n" + ], + [ + "\\bigcup_{i=_1}^n E_i", + "\"\\bigcup_{i=_1}^n" + ], + [ + "\\frac{2}{4}=0.5", + "\"\\frac{2}{4}=0.5\"" + ], + [ + "\\tfrac{2}{4} = 0.5", + "\"\\tfrac{2}{4}" + ], + [ + "\\dfrac{2}{4} = 0.5 \\qquad \\dfrac{2}{c + \\dfrac{2}{d + \\dfrac{2}{4}}} = a", + "\"\\dfrac{2}{4}" + ], + [ + "\\cfrac{2}{c + \\cfrac{2}{d + \\cfrac{2}{4}}} = a", + "\"\\cfrac{2}{c" + ], + [ + "\\cfrac{x}{1 + \\cfrac{\\cancel{y}}{\\cancel{y}}} = \\cfrac{x}{2}", + "\"\\cfrac{x}{1" + ], + [ + "\\binom{n}{k}", + "\"\\binom{n}{k}\"" + ], + [ + "\\tbinom{n}{k}", + "\"\\tbinom{n}{k}\"" + ], + [ + "\\dbinom{n}{k}", + "\"\\dbinom{n}{k}\"" + ], + [ + "\\begin{matrix} x & y \\\\ z & v\n\\end{matrix}", + "\"\\begin{matrix}" + ], + [ + "\\begin{vmatrix} x & y \\\\ z & v\n\\end{vmatrix}", + "\"\\begin{vmatrix}" + ], + [ + "\\begin{Vmatrix} x & y \\\\ z & v\n\\end{Vmatrix}", + "\"\\begin{Vmatrix}" + ], + [ + "\\begin{bmatrix} 0 & \\cdots & 0 \\\\ \\vdots\n& \\ddots & \\vdots \\\\ 0 & \\cdots &\n0\\end{bmatrix} ", + "\"\\begin{bmatrix}" + ], + [ + "\\begin{Bmatrix} x & y \\\\ z & v\n\\end{Bmatrix}", + "\"\\begin{Bmatrix}" + ], + [ + "\\begin{pmatrix} x & y \\\\ z & v\n\\end{pmatrix}", + "\"\\begin{pmatrix}" + ], + [ + "\n\\bigl( \\begin{smallmatrix}\na&b\\\\ c&d\n\\end{smallmatrix} \\bigr)\n", + "\"
\\bigl(" + ], + [ + "f(n) =\n\\begin{cases}\nn\/2, & \\text{if }n\\text{ is even} \\\\\n3n+1, & \\text{if }n\\text{ is odd}\n\\end{cases} ", + "\"f(n)" + ], + [ + "\n\\begin{align}\nf(x) & = (a+b)^2 \\\\\n& = a^2+2ab+b^2 \\\\\n\\end{align}\n", + "\"
\\begin{align}
f(x)" + ], + [ + "\n\\begin{alignat}{2}\nf(x) & = (a-b)^2 \\\\\n& = a^2-2ab+b^2 \\\\\n\\end{alignat}\n", + "\"
\\begin{alignat}{2}
f(x)" + ], + [ + "\\begin{array}{lcl}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}", + "\"\\begin{array}{lcl}
z" + ], + [ + "\\begin{array}{lcr}\nz & = & a \\\\\nf(x,y,z) & = & x + y + z\n\\end{array}", + "\"\\begin{array}{lcr}
z" + ], + [ + "f(x) \\,\\!", + "\"f(x)" + ], + [ + "= \\sum_{n=0}^\\infty a_n x^n ", + "\"=" + ], + [ + "= a_0+a_1x+a_2x^2+\\cdots", + "\"=" + ], + [ + "f(x) \\,\\!", + "\"f(x)" + ], + [ + "= \\sum_{n=0}^\\infty a_n x^n ", + "\"=" + ], + [ + "= a_0 +a_1x+a_2x^2+\\cdots", + "\"=" + ], + [ + "\\begin{cases} 3x + 5y + z \\\\ 7x - 2y + 4z \\\\ -6x + 3y + 2z \\end{cases}", + "\"\\begin{cases}" + ], + [ + "\n\\begin{array}{|c|c||c|} a & b & S \\\\\n\\hline\n0&0&1\\\\\n0&1&1\\\\\n1&0&1\\\\\n1&1&0\\\\\n\\end{array}\n", + "\"
\\begin{array}{|c|c||c|}" + ], + [ + "( \\frac{1}{2} )", + "\"(" + ], + [ + "\\left ( \\frac{1}{2} \\right )", + "\"\\left" + ], + [ + "\\left ( \\frac{a}{b} \\right )", + "\"\\left" + ], + [ + "\\left [ \\frac{a}{b} \\right ] \\quad \\left \\lbrack \\frac{a}{b} \\right \\rbrack", + "\"\\left" + ], + [ + "\\left \\{ \\frac{a}{b} \\right \\} \\quad \\left \\lbrace \\frac{a}{b} \\right \\rbrace", + "\"\\left" + ], + [ + "\\left \\langle \\frac{a}{b} \\right \\rangle", + "\"\\left" + ], + [ + "\\left | \\frac{a}{b} \\right \\vert \\quad \\left \\Vert \\frac{c}{d} \\right \\|", + "\"\\left" + ], + [ + "\\left \\lfloor \\frac{a}{b} \\right \\rfloor \\quad \\left \\lceil \\frac{c}{d} \\right \\rceil", + "\"\\left" + ], + [ + "\\left \/ \\frac{a}{b} \\right \\backslash", + "\"\\left" + ], + [ + "\\left \\uparrow \\frac{a}{b} \\right \\downarrow \\quad \\left \\Uparrow \\frac{a}{b} \\right \\Downarrow \\quad \\left \\updownarrow \\frac{a}{b} \\right \\Updownarrow", + "\"\\left" + ], + [ + "\\left [ 0,1 \\right )", + "\"\\left" + ], + [ + "\\left \\langle \\psi \\right |", + "\"\\left" + ], + [ + "\\left . \\frac{A}{B} \\right \\} \\to X", + "\"\\left" + ], + [ + "\\big( \\Big( \\bigg( \\Bigg( \\dots \\Bigg] \\bigg] \\Big] \\big]", + "\"\\big(" + ], + [ + "\\big\\{ \\Big\\{ \\bigg\\{ \\Bigg\\{ \\dots \\Bigg\\rangle \\bigg\\rangle \\Big\\rangle \\big\\rangle", + "\"\\big\\{" + ], + [ + "\\big\\| \\Big\\| \\bigg\\| \\Bigg\\| \\dots \\Bigg| \\bigg| \\Big| \\big|", + "\"\\big\\|" + ], + [ + "\\big\\lfloor \\Big\\lfloor \\bigg\\lfloor \\Bigg\\lfloor \\dots \\Bigg\\rceil \\bigg\\rceil \\Big\\rceil \\big\\rceil", + "\"\\big\\lfloor" + ], + [ + "\\big\\uparrow \\Big\\uparrow \\bigg\\uparrow \\Bigg\\uparrow \\dots \\Bigg\\Downarrow \\bigg\\Downarrow \\Big\\Downarrow \\big\\Downarrow", + "\"\\big\\uparrow" + ], + [ + "\\big\\updownarrow \\Big\\updownarrow \\bigg\\updownarrow \\Bigg\\updownarrow \\dots \\Bigg\\Updownarrow \\bigg\\Updownarrow \\Big\\Updownarrow \\big\\Updownarrow", + "\"\\big\\updownarrow" + ], + [ + "\\big \/ \\Big \/ \\bigg \/ \\Bigg \/ \\dots \\Bigg\\backslash \\bigg\\backslash \\Big\\backslash \\big\\backslash", + "\"\\big" + ], + [ + "x^2 + y^2 + z^2 = 1 \\,", + "\"x^2" + ], + [ + "\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta \\!", + "\"\\Alpha" + ], + [ + "\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho \\!", + "\"\\Iota" + ], + [ + "\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega \\!", + "\"\\Sigma" + ], + [ + "\\alpha \\beta \\gamma \\delta \\epsilon \\zeta \\eta \\theta \\!", + "\"\\alpha" + ], + [ + "\\iota \\kappa \\lambda \\mu \\nu \\xi \\pi \\rho \\!", + "\"\\iota" + ], + [ + "\\sigma \\tau \\upsilon \\phi \\chi \\psi \\omega \\!", + "\"\\sigma" + ], + [ + "\\varepsilon \\digamma \\varkappa \\varpi \\!", + "\"\\varepsilon" + ], + [ + "\\varrho \\varsigma \\vartheta \\varphi \\!", + "\"\\varrho" + ], + [ + "\\aleph \\beth \\gimel \\daleth \\!", + "\"\\aleph" + ], + [ + "\\mathbb{ABCDEFGHI} \\!", + "\"\\mathbb{ABCDEFGHI}" + ], + [ + "\\mathbb{JKLMNOPQR} \\!", + "\"\\mathbb{JKLMNOPQR}" + ], + [ + "\\mathbb{STUVWXYZ} \\!", + "\"\\mathbb{STUVWXYZ}" + ], + [ + "\\mathbf{ABCDEFGHI} \\!", + "\"\\mathbf{ABCDEFGHI}" + ], + [ + "\\mathbf{JKLMNOPQR} \\!", + "\"\\mathbf{JKLMNOPQR}" + ], + [ + "\\mathbf{STUVWXYZ} \\!", + "\"\\mathbf{STUVWXYZ}" + ], + [ + "\\mathbf{abcdefghijklm} \\!", + "\"\\mathbf{abcdefghijklm}" + ], + [ + "\\mathbf{nopqrstuvwxyz} \\!", + "\"\\mathbf{nopqrstuvwxyz}" + ], + [ + "\\mathbf{0123456789} \\!", + "\"\\mathbf{0123456789}" + ], + [ + "\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!", + "\"\\boldsymbol{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta}" + ], + [ + "\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!", + "\"\\boldsymbol{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho}" + ], + [ + "\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!", + "\"\\boldsymbol{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega}" + ], + [ + "\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta} \\!", + "\"\\boldsymbol{\\alpha\\beta\\gamma\\delta\\epsilon\\zeta\\eta\\theta}" + ], + [ + "\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho} \\!", + "\"\\boldsymbol{\\iota\\kappa\\lambda\\mu\\nu\\xi\\pi\\rho}" + ], + [ + "\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega} \\!", + "\"\\boldsymbol{\\sigma\\tau\\upsilon\\phi\\chi\\psi\\omega}" + ], + [ + "\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi} \\!", + "\"\\boldsymbol{\\varepsilon\\digamma\\varkappa\\varpi}" + ], + [ + "\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi} \\!", + "\"\\boldsymbol{\\varrho\\varsigma\\vartheta\\varphi}" + ], + [ + "\\mathit{0123456789} \\!", + "\"\\mathit{0123456789}" + ], + [ + "\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta} \\!", + "\"\\mathit{\\Alpha\\Beta\\Gamma\\Delta\\Epsilon\\Zeta\\Eta\\Theta}" + ], + [ + "\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho} \\!", + "\"\\mathit{\\Iota\\Kappa\\Lambda\\Mu\\Nu\\Xi\\Pi\\Rho}" + ], + [ + "\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega} \\!", + "\"\\mathit{\\Sigma\\Tau\\Upsilon\\Phi\\Chi\\Psi\\Omega}" + ], + [ + "\\mathrm{ABCDEFGHI} \\!", + "\"\\mathrm{ABCDEFGHI}" + ], + [ + "\\mathrm{JKLMNOPQR} \\!", + "\"\\mathrm{JKLMNOPQR}" + ], + [ + "\\mathrm{STUVWXYZ} \\!", + "\"\\mathrm{STUVWXYZ}" + ], + [ + "\\mathrm{abcdefghijklm} \\!", + "\"\\mathrm{abcdefghijklm}" + ], + [ + "\\mathrm{nopqrstuvwxyz} \\!", + "\"\\mathrm{nopqrstuvwxyz}" + ], + [ + "\\mathrm{0123456789} \\!", + "\"\\mathrm{0123456789}" + ], + [ + "\\mathsf{ABCDEFGHI} \\!", + "\"\\mathsf{ABCDEFGHI}" + ], + [ + "\\mathsf{JKLMNOPQR} \\!", + "\"\\mathsf{JKLMNOPQR}" + ], + [ + "\\mathsf{STUVWXYZ} \\!", + "\"\\mathsf{STUVWXYZ}" + ], + [ + "\\mathsf{abcdefghijklm} \\!", + "\"\\mathsf{abcdefghijklm}" + ], + [ + "\\mathsf{nopqrstuvwxyz} \\!", + "\"\\mathsf{nopqrstuvwxyz}" + ], + [ + "\\mathsf{0123456789} \\!", + "\"\\mathsf{0123456789}" + ], + [ + "\\mathsf{\\Alpha \\Beta \\Gamma \\Delta \\Epsilon \\Zeta \\Eta \\Theta} \\!", + "\"\\mathsf{\\Alpha" + ], + [ + "\\mathsf{\\Iota \\Kappa \\Lambda \\Mu \\Nu \\Xi \\Pi \\Rho} \\!", + "\"\\mathsf{\\Iota" + ], + [ + "\\mathsf{\\Sigma \\Tau \\Upsilon \\Phi \\Chi \\Psi \\Omega}\\!", + "\"\\mathsf{\\Sigma" + ], + [ + "\\mathcal{ABCDEFGHI} \\!", + "\"\\mathcal{ABCDEFGHI}" + ], + [ + "\\mathcal{JKLMNOPQR} \\!", + "\"\\mathcal{JKLMNOPQR}" + ], + [ + "\\mathcal{STUVWXYZ} \\!", + "\"\\mathcal{STUVWXYZ}" + ], + [ + "\\mathfrak{ABCDEFGHI} \\!", + "\"\\mathfrak{ABCDEFGHI}" + ], + [ + "\\mathfrak{JKLMNOPQR} \\!", + "\"\\mathfrak{JKLMNOPQR}" + ], + [ + "\\mathfrak{STUVWXYZ} \\!", + "\"\\mathfrak{STUVWXYZ}" + ], + [ + "\\mathfrak{abcdefghijklm} \\!", + "\"\\mathfrak{abcdefghijklm}" + ], + [ + "\\mathfrak{nopqrstuvwxyz} \\!", + "\"\\mathfrak{nopqrstuvwxyz}" + ], + [ + "\\mathfrak{0123456789} \\!", + "\"\\mathfrak{0123456789}" + ], + [ + "x y z", + "\"x" + ], + [ + "\\text{x y z}", + "\"\\text{x" + ], + [ + "\\text{if} n \\text{is even}", + "\"\\text{if}" + ], + [ + "\\text{if }n\\text{ is even}", + "\"\\text{if" + ], + [ + "\\text{if}~n\\ \\text{is even}", + "\"\\text{if}~n\\" + ], + [ + "{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}", + "\"{\\color{Blue}x^2}+{\\color{YellowOrange}2x}-{\\color{OliveGreen}1}\"" + ], + [ + "x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}", + "\"x_{1,2}=\\frac{-b\\pm\\sqrt{\\color{Red}b^2-4ac}}{2a}\"" + ], + [ + "e^{i \\pi} + 1 = 0", + "\"e^{i" + ], + [ + "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", + "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" + ], + [ + "e^{i \\pi} + 1 = 0\\,\\!", + "\"e^{i" + ], + [ + "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", + "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" + ], + [ + "e^{i \\pi} + 1 = 0", + "\"e^{i" + ], + [ + "\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i \\pi} + 1 = 0", + "\"\\definecolor{orange}{RGB}{255,165,0}\\pagecolor{orange}e^{i" + ], + [ + "\\color{Apricot}\\text{Apricot}", + "\"\\color{Apricot}\\text{Apricot}\"" + ], + [ + "\\color{Aquamarine}\\text{Aquamarine}", + "\"\\color{Aquamarine}\\text{Aquamarine}\"" + ], + [ + "\\color{Bittersweet}\\text{Bittersweet}", + "\"\\color{Bittersweet}\\text{Bittersweet}\"" + ], + [ + "\\color{Black}\\text{Black}", + "\"\\color{Black}\\text{Black}\"" + ], + [ + "\\color{Blue}\\text{Blue}", + "\"\\color{Blue}\\text{Blue}\"" + ], + [ + "\\color{BlueGreen}\\text{BlueGreen}", + "\"\\color{BlueGreen}\\text{BlueGreen}\"" + ], + [ + "\\color{BlueViolet}\\text{BlueViolet}", + "\"\\color{BlueViolet}\\text{BlueViolet}\"" + ], + [ + "\\color{BrickRed}\\text{BrickRed}", + "\"\\color{BrickRed}\\text{BrickRed}\"" + ], + [ + "\\color{Brown}\\text{Brown}", + "\"\\color{Brown}\\text{Brown}\"" + ], + [ + "\\color{BurntOrange}\\text{BurntOrange}", + "\"\\color{BurntOrange}\\text{BurntOrange}\"" + ], + [ + "\\color{CadetBlue}\\text{CadetBlue}", + "\"\\color{CadetBlue}\\text{CadetBlue}\"" + ], + [ + "\\color{CarnationPink}\\text{CarnationPink}", + "\"\\color{CarnationPink}\\text{CarnationPink}\"" + ], + [ + "\\color{Cerulean}\\text{Cerulean}", + "\"\\color{Cerulean}\\text{Cerulean}\"" + ], + [ + "\\color{CornflowerBlue}\\text{CornflowerBlue}", + "\"\\color{CornflowerBlue}\\text{CornflowerBlue}\"" + ], + [ + "\\color{Cyan}\\text{Cyan}", + "\"\\color{Cyan}\\text{Cyan}\"" + ], + [ + "\\color{Dandelion}\\text{Dandelion}", + "\"\\color{Dandelion}\\text{Dandelion}\"" + ], + [ + "\\color{DarkOrchid}\\text{DarkOrchid}", + "\"\\color{DarkOrchid}\\text{DarkOrchid}\"" + ], + [ + "\\color{Emerald}\\text{Emerald}", + "\"\\color{Emerald}\\text{Emerald}\"" + ], + [ + "\\color{ForestGreen}\\text{ForestGreen}", + "\"\\color{ForestGreen}\\text{ForestGreen}\"" + ], + [ + "\\color{Fuchsia}\\text{Fuchsia}", + "\"\\color{Fuchsia}\\text{Fuchsia}\"" + ], + [ + "\\color{Goldenrod}\\text{Goldenrod}", + "\"\\color{Goldenrod}\\text{Goldenrod}\"" + ], + [ + "\\color{Gray}\\text{Gray}", + "\"\\color{Gray}\\text{Gray}\"" + ], + [ + "\\color{Green}\\text{Green}", + "\"\\color{Green}\\text{Green}\"" + ], + [ + "\\color{GreenYellow}\\text{GreenYellow}", + "\"\\color{GreenYellow}\\text{GreenYellow}\"" + ], + [ + "\\color{JungleGreen}\\text{JungleGreen}", + "\"\\color{JungleGreen}\\text{JungleGreen}\"" + ], + [ + "\\color{Lavender}\\text{Lavender}", + "\"\\color{Lavender}\\text{Lavender}\"" + ], + [ + "\\color{LimeGreen}\\text{LimeGreen}", + "\"\\color{LimeGreen}\\text{LimeGreen}\"" + ], + [ + "\\color{Magenta}\\text{Magenta}", + "\"\\color{Magenta}\\text{Magenta}\"" + ], + [ + "\\color{Mahogany}\\text{Mahogany}", + "\"\\color{Mahogany}\\text{Mahogany}\"" + ], + [ + "\\color{Maroon}\\text{Maroon}", + "\"\\color{Maroon}\\text{Maroon}\"" + ], + [ + "\\color{Melon}\\text{Melon}", + "\"\\color{Melon}\\text{Melon}\"" + ], + [ + "\\color{MidnightBlue}\\text{MidnightBlue}", + "\"\\color{MidnightBlue}\\text{MidnightBlue}\"" + ], + [ + "\\color{Mulberry}\\text{Mulberry}", + "\"\\color{Mulberry}\\text{Mulberry}\"" + ], + [ + "\\color{NavyBlue}\\text{NavyBlue}", + "\"\\color{NavyBlue}\\text{NavyBlue}\"" + ], + [ + "\\color{OliveGreen}\\text{OliveGreen}", + "\"\\color{OliveGreen}\\text{OliveGreen}\"" + ], + [ + "\\color{Orange}\\text{Orange}", + "\"\\color{Orange}\\text{Orange}\"" + ], + [ + "\\color{OrangeRed}\\text{OrangeRed}", + "\"\\color{OrangeRed}\\text{OrangeRed}\"" + ], + [ + "\\color{Orchid}\\text{Orchid}", + "\"\\color{Orchid}\\text{Orchid}\"" + ], + [ + "\\color{Peach}\\text{Peach}", + "\"\\color{Peach}\\text{Peach}\"" + ], + [ + "\\color{Periwinkle}\\text{Periwinkle}", + "\"\\color{Periwinkle}\\text{Periwinkle}\"" + ], + [ + "\\color{PineGreen}\\text{PineGreen}", + "\"\\color{PineGreen}\\text{PineGreen}\"" + ], + [ + "\\color{Plum}\\text{Plum}", + "\"\\color{Plum}\\text{Plum}\"" + ], + [ + "\\color{ProcessBlue}\\text{ProcessBlue}", + "\"\\color{ProcessBlue}\\text{ProcessBlue}\"" + ], + [ + "\\color{Purple}\\text{Purple}", + "\"\\color{Purple}\\text{Purple}\"" + ], + [ + "\\color{RawSienna}\\text{RawSienna}", + "\"\\color{RawSienna}\\text{RawSienna}\"" + ], + [ + "\\color{Red}\\text{Red}", + "\"\\color{Red}\\text{Red}\"" + ], + [ + "\\color{RedOrange}\\text{RedOrange}", + "\"\\color{RedOrange}\\text{RedOrange}\"" + ], + [ + "\\color{RedViolet}\\text{RedViolet}", + "\"\\color{RedViolet}\\text{RedViolet}\"" + ], + [ + "\\color{Rhodamine}\\text{Rhodamine}", + "\"\\color{Rhodamine}\\text{Rhodamine}\"" + ], + [ + "\\color{RoyalBlue}\\text{RoyalBlue}", + "\"\\color{RoyalBlue}\\text{RoyalBlue}\"" + ], + [ + "\\color{RoyalPurple}\\text{RoyalPurple}", + "\"\\color{RoyalPurple}\\text{RoyalPurple}\"" + ], + [ + "\\color{RubineRed}\\text{RubineRed}", + "\"\\color{RubineRed}\\text{RubineRed}\"" + ], + [ + "\\color{Salmon}\\text{Salmon}", + "\"\\color{Salmon}\\text{Salmon}\"" + ], + [ + "\\color{SeaGreen}\\text{SeaGreen}", + "\"\\color{SeaGreen}\\text{SeaGreen}\"" + ], + [ + "\\color{Sepia}\\text{Sepia}", + "\"\\color{Sepia}\\text{Sepia}\"" + ], + [ + "\\color{SkyBlue}\\text{SkyBlue}", + "\"\\color{SkyBlue}\\text{SkyBlue}\"" + ], + [ + "\\color{SpringGreen}\\text{SpringGreen}", + "\"\\color{SpringGreen}\\text{SpringGreen}\"" + ], + [ + "\\color{Tan}\\text{Tan}", + "\"\\color{Tan}\\text{Tan}\"" + ], + [ + "\\color{TealBlue}\\text{TealBlue}", + "\"\\color{TealBlue}\\text{TealBlue}\"" + ], + [ + "\\color{Thistle}\\text{Thistle}", + "\"\\color{Thistle}\\text{Thistle}\"" + ], + [ + "\\color{Turquoise}\\text{Turquoise}", + "\"\\color{Turquoise}\\text{Turquoise}\"" + ], + [ + "\\color{Violet}\\text{Violet}", + "\"\\color{Violet}\\text{Violet}\"" + ], + [ + "\\color{VioletRed}\\text{VioletRed}", + "\"\\color{VioletRed}\\text{VioletRed}\"" + ], + [ + "\\color{WildStrawberry}\\text{WildStrawberry}", + "\"\\color{WildStrawberry}\\text{WildStrawberry}\"" + ], + [ + "\\color{YellowGreen}\\text{YellowGreen}", + "\"\\color{YellowGreen}\\text{YellowGreen}\"" + ], + [ + "\\color{YellowOrange}\\text{YellowOrange}", + "\"\\color{YellowOrange}\\text{YellowOrange}\"" + ], + [ + "a \\qquad b", + "\"a" + ], + [ + "a \\quad b", + "\"a" + ], + [ + "a\\ b", + "\"a\\" + ], + [ + "a \\mbox{ } b", + "\"a" + ], + [ + "a\\;b", + "\"a\\;b\"" + ], + [ + "a\\,b", + "\"a\\,b\"" + ], + [ + "ab", + "\"ab\"" + ], + [ + "\\mathit{ab}", + "\"\\mathit{ab}\"" + ], + [ + "a\\!b", + "\"a\\!b\"" + ], + [ + "0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots", + "\"0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots\"" + ], + [ + "{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}", + "\"{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\\cdots}\"" + ], + [ + "\\int_{-N}^{N} e^x\\, dx", + "\"\\int_{-N}^{N}" + ], + [ + "\\sum_{i=0}^\\infty 2^{-i}", + "\"\\sum_{i=0}^\\infty" + ], + [ + "\\text{geometric series:}\\quad \\sum_{i=0}^\\infty 2^{-i}=2 ", + "\"\\text{geometric" + ], + [ + "\\iint", + "\"\\iint\"" + ], + [ + "\\oint", + "\"\\oint\"" + ], + [ + "\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset \\mathbf D \\cdot \\mathrm{d}\\mathbf A", + "\"\\iint\\limits_{S}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\subset\\!\\supset" + ], + [ + "\\int\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\cdot\\mathrm{d}\\mathbf A", + "\"\\int\\!\\!\\!\\!\\int_{\\partial" + ], + [ + "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\subset\\!\\supset \\mathbf D\\cdot\\mathrm{d}\\mathbf A", + "\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial" + ], + [ + "\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial V}\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\!\\;\\;\\;\\bigcirc\\,\\,\\mathbf D\\;\\cdot\\mathrm{d}\\mathbf A", + "\"\\int\\!\\!\\!\\!\\!\\int\\!\\!\\!\\!\\!\\int_{\\partial" + ], + [ + "{\\scriptstyle S}", + "\"{\\scriptstyle" + ], + [ + "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ", + "\"(" + ], + [ + "{\\scriptstyle S}", + "\"{\\scriptstyle" + ], + [ + "( \\nabla \\times \\bold{F} ) \\cdot {\\rm d}\\bold{S} = \\oint_{\\partial S} \\bold{F} \\cdot {\\rm d}\\boldsymbol{\\ell} ", + "\"(" + ], + [ + "\\oint_C \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ", + "\"\\oint_C" + ], + [ + "{\\scriptstyle S}", + "\"{\\scriptstyle" + ], + [ + "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}", + "\"\\left" + ], + [ + "\\oint_{\\partial S} \\bold{B} \\cdot {\\rm d} \\boldsymbol{\\ell} = \\mu_0 ", + "\"\\oint_{\\partial" + ], + [ + "{\\scriptstyle S}", + "\"{\\scriptstyle" + ], + [ + "\\left ( \\bold{J} + \\epsilon_0\\frac{\\partial \\bold{E}}{\\partial t} \\right ) \\cdot {\\rm d}\\bold{S}", + "\"\\left" + ], + [ + "\\bold{P} = ", + "\"\\bold{P}" + ], + [ + "{\\scriptstyle \\partial \\Omega}", + "\"{\\scriptstyle" + ], + [ + "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0", + "\"\\bold{T}" + ], + [ + "\\bold{P} = ", + "\"\\bold{P}" + ], + [ + "{\\scriptstyle \\partial \\Omega}", + "\"{\\scriptstyle" + ], + [ + "\\bold{T} \\cdot {\\rm d}^3\\boldsymbol{\\Sigma} = 0", + "\"\\bold{T}" + ], + [ + "\\overset{\\frown}{AB}", + "\"\\overset{\\frown}{AB}\"" + ], + [ + "ax^2 + bx + c = 0", + "\"ax^2" + ], + [ + "ax^2 + bx + c = 0", + "\"ax^2" + ], + [ + "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}", + "\"x={-b\\pm\\sqrt{b^2-4ac}" + ], + [ + "x={-b\\pm\\sqrt{b^2-4ac} \\over 2a}", + "\"x={-b\\pm\\sqrt{b^2-4ac}" + ], + [ + "2 = \\left( \\frac{\\left(3-x\\right) \\times 2}{3-x} \\right)", + "\"2" + ], + [ + "2 = \\left(\n\\frac{\\left(3-x\\right) \\times 2}{3-x}\n\\right)", + "\"2" + ], + [ + "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}", + "\"S_{\\text{new}}" + ], + [ + "S_{\\text{new}} = S_{\\text{old}} - \\frac{ \\left( 5-T \\right) ^2} {2}", + "\"S_{\\text{new}}" + ], + [ + "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds = \\int_a^x f(y)(x-y)\\,dy", + "\"\\int_a^x" + ], + [ + "\\int_a^x \\!\\!\\!\\int_a^s f(y)\\,dy\\,ds\n= \\int_a^x f(y)(x-y)\\,dy", + "\"\\int_a^x" + ], + [ + "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0", + "\"\\det(\\mathsf{A}-\\lambda\\mathsf{I})" + ], + [ + "\\det(\\mathsf{A}-\\lambda\\mathsf{I}) = 0", + "\"\\det(\\mathsf{A}-\\lambda\\mathsf{I})" + ], + [ + "\\sum_{i=0}^{n-1} i", + "\"\\sum_{i=0}^{n-1}" + ], + [ + "\\sum_{i=0}^{n-1} i", + "\"\\sum_{i=0}^{n-1}" + ], + [ + "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}", + "\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}{3^m\\left(m\\,3^n+n\\,3^m\\right)}\"" + ], + [ + "\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}\n{3^m\\left(m\\,3^n+n\\,3^m\\right)}", + "\"\\sum_{m=1}^\\infty\\sum_{n=1}^\\infty\\frac{m^2\\,n}
{3^m\\left(m\\,3^n+n\\,3^m\\right)}\"" + ], + [ + "u'' + p(x)u' + q(x)u=f(x),\\quad x>a", + "\"u''" + ], + [ + "u'' + p(x)u' + q(x)u=f(x),\\quad x>a", + "\"u''" + ], + [ + "|\\bar{z}| = |z|, |(\\bar{z})^n| = |z|^n, \\arg(z^n) = n \\arg(z)", + "\"|\\bar{z}|" + ], + [ + "|\\bar{z}| = |z|,\n|(\\bar{z})^n| = |z|^n,\n\\arg(z^n) = n \\arg(z)", + "\"|\\bar{z}|" + ], + [ + "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)", + "\"\\lim_{z\\rightarrow" + ], + [ + "\\lim_{z\\rightarrow z_0} f(z)=f(z_0)", + "\"\\lim_{z\\rightarrow" + ], + [ + "\\phi_n(\\kappa)\n= \\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty \\frac{\\sin(\\kappa R)}{\\kappa R} \\frac{\\partial}{\\partial R} \\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR", + "\"\\phi_n(\\kappa)
=" + ], + [ + "\\phi_n(\\kappa) =\n\\frac{1}{4\\pi^2\\kappa^2} \\int_0^\\infty\n\\frac{\\sin(\\kappa R)}{\\kappa R}\n\\frac{\\partial}{\\partial R}\n\\left[R^2\\frac{\\partial D_n(R)}{\\partial R}\\right]\\,dR", + "\"\\phi_n(\\kappa)" + ], + [ + "\\phi_n(\\kappa) = 0.033C_n^2\\kappa^{-11\/3},\\quad \\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}", + "\"\\phi_n(\\kappa)" + ], + [ + "\\phi_n(\\kappa) =\n0.033C_n^2\\kappa^{-11\/3},\\quad\n\\frac{1}{L_0}\\ll\\kappa\\ll\\frac{1}{l_0}", + "\"\\phi_n(\\kappa)" + ], + [ + "f(x) = \\begin{cases}1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\ 1 - x^2 & \\text{otherwise}\\end{cases}", + "\"f(x)" + ], + [ + "\nf(x) =\n\\begin{cases}\n1 & -1 \\le x < 0 \\\\\n\\frac{1}{2} & x = 0 \\\\\n1 - x^2 & \\text{otherwise}\n\\end{cases}\n", + "\"
f(x)" + ], + [ + "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z) = \\sum_{n=0}^\\infty \\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\\frac{z^n}{n!}", + "\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)" + ], + [ + "{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)\n= \\sum_{n=0}^\\infty\n\\frac{(a_1)_n\\cdots(a_p)_n}{(c_1)_n\\cdots(c_q)_n}\n\\frac{z^n}{n!}", + "\"{}_pF_q(a_1,\\dots,a_p;c_1,\\dots,c_q;z)
=" + ], + [ + "\\frac{a}{b}\\ \\tfrac{a}{b}", + "\"\\frac{a}{b}\\" + ], + [ + "\\frac{a}{b}\\ \\tfrac{a}{b}", + "\"\\frac{a}{b}\\" + ], + [ + "S=dD\\,\\sin\\alpha\\!", + "\"S=dD\\,\\sin\\alpha\\!\"" + ], + [ + "S=dD\\,\\sin\\alpha\\!", + "\"S=dD\\,\\sin\\alpha\\!\"" + ], + [ + "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]", + "\"V=\\frac16\\pi" + ], + [ + "V=\\frac16\\pi h\\left[3\\left(r_1^2+r_2^2\\right)+h^2\\right]", + "\"V=\\frac16\\pi" + ], + [ + "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v)\\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}", + "\"\\begin{align}
u" + ], + [ + "\\begin{align}\nu & = \\tfrac{1}{\\sqrt{2}}(x+y) \\qquad & x &= \\tfrac{1}{\\sqrt{2}}(u+v) \\\\\nv & = \\tfrac{1}{\\sqrt{2}}(x-y) \\qquad & y &= \\tfrac{1}{\\sqrt{2}}(u-v)\n\\end{align}", + "\"\\begin{align}
u" + ], + [ + " with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped <math> tags. [[Image:foobar.jpg|thumb|2+2", + "Failed to parse (syntax error): with a thumbnail- we don't render math in the parsertests by default, so math is not stripped and turns up as escaped &lt;math&gt; tags. [[Image:foobar.jpg|thumb|<math>2+2<\/strong>\n" + ], + [ + " with a thumbnail- math enabled [[Image:foobar.jpg|thumb|2+2", + "\"" + ], + [ + "