Add negative kerning and lines to captcha

This should throw off many off-the-shelf OCRs.

Credit for this patch is Brian Wolff, I just found the code and turned
it into a patch. License: GPL V2.

Examples of output of the patch: T141490#9459799

Bug: T141490
Co-authored-by: Brian Wolff <bawolff+wn@gmail.com>
Change-Id: Ia17157d45995b78c6a73f844dfe7d20d09564748
This commit is contained in:
Amir Sarabadani 2024-01-15 14:30:23 +01:00
parent cf1c91a174
commit 69c7a8dbdc

View file

@ -33,7 +33,6 @@ import os
import sys
import re
import multiprocessing
import time
try:
from PIL import Image
@ -46,7 +45,7 @@ except:
sys.exit("This script requires the Python Imaging Library - http://www.pythonware.com/products/pil/")
nonalpha = re.compile('[^a-z]') # regex to test for suitability of words
confusedletters = re.compile( '[ijtlr][ijtl]|r[nompqr]|[il]' ) # when il beside each other, hard to read.
# Pillow 9.2 added getbbox to replace getsize, and getsize() was removed in Pillow 10
# https://pillow.readthedocs.io/en/stable/releasenotes/10.0.0.html#font-size-and-offset-methods
# We don't have a requirements.txt, and therefore don't declare any specific supported or min version...
@ -57,7 +56,7 @@ def wobbly_copy(src, wob, col, scale, ang):
x, y = src.size
f = random.uniform(4*scale, 5*scale)
p = random.uniform(0, math.pi*2)
rr = ang+random.uniform(-10, 10) # vary, but not too much
rr = ang+random.uniform(-30, 30) # vary, but not too much
int_d = Image.new('RGB', src.size, 0) # a black rectangle
rot = src.rotate(rr, Image.BILINEAR)
# Do a cheap bounding-box op here to try to limit work below
@ -98,39 +97,26 @@ def gen_captcha(text, fontname, fontsize, file_name):
d = ImageDraw.Draw(im)
x, y = im.size
# add the text to the image
d.text((x/2-dim[0]/2, y/2-dim[1]/2), text, font=font, fill=fgcolor)
k = 2
wob = 0.09*dim[1]
rot = 45
# Apply lots of small stirring operations, rather than a few large ones
# in order to get some uniformity of treatment, whilst
# maintaining randomness
for i in range(k):
im = wobbly_copy(im, wob, bgcolor, i*2+3, rot+0)
im = wobbly_copy(im, wob, bgcolor, i*2+1, rot+45)
im = wobbly_copy(im, wob, bgcolor, i*2+2, rot+90)
rot += 30
# Using between 5-6 pixels of negative kerning seemed
# enough to confuse tesseract but still be very readable
offset = 0
for c in text:
d.text((x/2-dim[0]/2+offset, y/2-dim[1]/2+random.uniform(-3,7)), c, font=font, fill=fgcolor)
offset += font.getsize( c )[0] - random.uniform(5,6)
for i in range(5):
d.arc((
int(offset*(i-1)/5+x/2-dim[0]/2+random.uniform(0,10)),
int(y/2-dim[1]/2+30+random.uniform(-10,15)),
int(offset*i/5+x/2-dim[0]/2+random.uniform(-5,5)),
int(y/2-dim[1]/2+30+random.uniform(-10,30))
),int(random.uniform(-30,30)), int(random.uniform(160,300)),fill=fgcolor )
# now get the bounding box of the nonzero parts of the image
bbox = im.getbbox()
bord = min(dim[0], dim[1])/4 # a bit of a border
im = im.crop((bbox[0]-bord, bbox[1]-bord, bbox[2]+bord, bbox[3]+bord))
# Create noise
nblock = 4
nsize = (im.size[0] // nblock, im.size[1] // nblock)
noise = Image.new('L', nsize, bgcolor)
data = noise.load()
for x in range(nsize[0]):
for y in range(nsize[1]):
r = random.randint(0, 65)
gradient = 70 * x // nsize[0]
data[x, y] = r + gradient
# Turn speckles into blobs
noise = noise.resize(im.size, Image.BILINEAR)
# Add to the image
im = ImageMath.eval('convert(convert(a, "L") / 3 + b, "RGB")', a=im, b=noise)
# and turn into black on white
im = ImageOps.invert(im)
@ -183,6 +169,10 @@ def try_pick_word(words, badwordlist, verbose, nwords, min_length, max_length):
if verbose:
print("skipping word pair '%s' because it contains non-alphabetic characters" % word)
return None
if confusedletters.search(word):
if verbose:
print("skipping word pair '%s' because it contains confusing letters beside each other" % word)
return None
for naughty in badwordlist:
if naughty in word:
@ -207,7 +197,7 @@ def read_wordlist(filename):
return words
def run_in_thread(object):
count = object[0];
count = object[0]
words = object[1]
badwordlist = object[2]
opts = object[3]
@ -215,7 +205,7 @@ def run_in_thread(object):
fontsize = object[5]
for i in range(count):
word = pick_word(words, badwordlist, verbose, opts.number_words, opts.min_length, opts.max_length)
word = pick_word(words, badwordlist, opts.verbose, opts.number_words, opts.min_length, opts.max_length)
salt = "%08x" % random.randrange(2**32)
# 64 bits of hash is plenty for this purpose
md5hash = hashlib.md5((key+salt+word+key+salt).encode('utf-8')).hexdigest()[:16]
@ -223,7 +213,7 @@ def run_in_thread(object):
if dirs:
subdir = gen_subdir(output, md5hash, dirs)
filename = os.path.join(subdir, filename)
if verbose:
if opts.verbose:
print(filename)
gen_captcha(word, font, fontsize, os.path.join(output, filename))
@ -302,7 +292,7 @@ if __name__ == '__main__':
else:
chunks = (count // threads)
p = multiprocessing.Pool(threads);
p = multiprocessing.Pool(threads)
data = []
print("Generating %s CAPTCHA images separated in %s image(s) per chunk run by %s threads..." % (count, chunks, threads))
for i in range(0, threads):